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Abstract. The Weibull distribution is widely used in reliability as a model for time to failure. In
this paper, we investigate goodness-of-fit tests based on the empirical distribution function and
apply them to test the validity of the Weibull model. We use the maximum likelihood estimator
to estimate the scale and shape parameters of the distribution. A Monte Carlo simulation study
is employed to determine the critical values and the actual size of the considered tests. The
power values of the tests are computed and compared with each other. A real data example is
used to illustrate the proposed tests.
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1 Introduction
In the process of statistically analyzing lifetime data, the goodness-of-fit (GOF) test procedure
is important to choose a distribution that adequately fits the data. The classical GOF tests are
usually based on graphical analysis, moment such as skewness or kurtosis, chi-squared type, the
empirical distribution function, or regression, and correlation; see Kim (2017).

Many authors have extensively studied the GOF technique, which was introduced by Karl
Pearson in 1900. Those interested in a comprehensive understanding of this topic may refer to
the books by D’Agostino and Stephens (1986).

There are several GOF tests based on the empirical distribution function, which are com-
mon and sophisticated, namely Cramer-von Mises (W 2), Kolmogorov-Smirnov (D), Kuiper (V ),
Watson (U2) and Anderson-Darling (A2). For details, see D’Agostino and Stephens (1986). Fur-
thermore, some different GOF tests are developed by researchers for various distributions; see
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for example, Chandra et al. (1981); Kim (2017); Krit (2014); Littell et al. (1979); Mann et al.
(1973), and Alizadeh Noughabi and Shafaei Noughabi (2024).

Three GOF tests, which are based on the empirical distribution function, are introduced by
Zhang (2002). Compared with previous competing tests to fit the normal distribution, the new
tests have higher power than the classic ones. Recently, Torabi et al. (2016) investigated the
new GOF test for normality based on the empirical distribution function, which proved to be
effective and powerful for some alternatives. Furthermore, Torabi et al. (2018) considered a test
for the exponential distribution utilizing the same test statistic in another study.

The Weibull statistical model, which was suggested by Waloddi Weibull in 1939, is one of
the best statistical models in the field of reliability. Its density function is

f (x;η ,β ) =
β
η

(
x
η

)β−1

exp

(
−
(

x
η

)β
)
, x ≥ 0, η > 0, β > 0.

It is used in many fields such as geology, chemistry, physics, medicine, environmental science,
economics, geography, and engineering. See, for instance, Ghazanfari Rad and Riazi (2023);
Jung and Schindler (2017) for analysis of wind speed, Garca et al. (2020) for radar square-law
detection, and Klakattawi (2022) for survival analysis of cancer patients.

The aim of this paper is to compare a wide representative selection of classical and recent
tests to fit the Weibull distribution. The methods, proposed by Zhang (2002) and Torabi et al.
(2016) are used to construct new tests of fit for Weibull distribution.

The rest of the paper is classified as follows. In Section 2, we consider test statistics based
on the empirical distribution function and apply them to the Weibull distribution. In Section
3, the critical points and the actual sizes of the tests are obtained by Monte Carlo simulations.
The power values of the tests are compared with each other. Section 4 contains applications of
the tests in real examples. Finally, the conclusion is discussed in section 5.

2 The test statistics

Let X1, . . . ,Xn be n independent and identically distributed random variables from a continuous
distribution F , with order statistics X(1), . . . ,X(n). The hypothesis of interest is

H0 : F(x) = F0(x;η ,β ), for all x > 0,

H1 : F(x) ̸= F0(x;η ,β ), for some x > 0, (1)

where η , and β are unknown parameters and

F0(x;η ,β ) = 1− exp

(
−
(

x
η

)β
)
, x ≥ 0, η > 0, β > 0,

is the cumulative distribution function (CDF) of Weibull random variable, dented by W (η ,β ).
To estimate the unknown parameters, the maximum likelihood method (MLE) is used, and the
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MLEs are the solution of the following equations:
η̂n =

[
1
n

n

∑
i=1

X β̂n
i

] 1
β̂n

,

n
β̂n
+

n

∑
i=1

lnXi −
n

n

∑
i=1

X β̂n
i

n

∑
i=1

X β̂n
i lnXi = 0.

2.1 Traditional tests
The existing tests for (1) that are commonly employed in practice, are briefly explained in the
following:

• Von Mises (1931) statistic (W 2)

W 2 = n
+∞∫

−∞

[Fn(x)−F0(x)]2 dF̂0(x),

=
1

12n
+

n

∑
i=1

(
2i−1

2n
−F0

(
X(i); η̂ , β̂

))2

.

• Watson (1961) statistic (U2)
U2 =W 2 −n(Ū −0.5)2,

where Ū is the mean of F0

(
X(i); η̂ , β̂

)
, i = 1,2, . . . ,n.

• The Kolmogorov (1933) statistic

D = max
(
D+,D−) ,

where

D+ = max
1≤i≤n

{
i
n
−F0

(
X(i); η̂ , β̂

)}
,

D− = max
1≤i≤n

{
F0

(
X(i); η̂ , β̂

)
− i−1

n

}
.

• The Kuiper (1960) statistic
V = D++D−.

• The Anderson and Darling (1954) statistic

A2 =−n− 1
n

n

∑
i=1

(2i−1)
{

lnF0

(
X(i); η̂ , β̂

)
+ ln

[
1−F0

(
X(n−i+1); η̂ , β̂

)]}
.
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2.2 Tests based on Zhang (2002)

Considering the problem of testing (1), we describe two tests based on the empirical distribution
function, suggested by Zhang (2002). In short, the approach of Zhang (2002) for the Weibull
distribution is described as follows. Let

Ht : F(t) = F0(t;η ,β ),

and let H̄t : F(t) ̸= F0(t;η ,β ). Hence,

H0 :
∩

t∈(0,∞)

Ht and H1 =
∪

t∈(0,∞)

H̄t .

According to Zhang (2002), testing H0 versus H1, is equivalent to testing Ht versus H̄t , for every
t ∈ (0,∞).

Having a binary random sample, Xit = I(Xi ≤ t), i = 1,2, . . . ,n, where P(Xit = 1) = F(t) and
P(Xit = 0) = 1−F(t), Zt is a test statistic to testing Ht versus H̄t , for each fixed t ∈ (0,∞) and the
large values of Zt rejects Ht . In view of Zhang (2002), two test statistics for testing H0 verses
H1, are given by

Z =
∫ +∞

−∞
Ztdw(t) and Zmax = sup

t∈(0,∞)

[Ztw(t)], (2)

where w(t) is some weight function and the null hypothesis will be rejected for large values of
Z or Zmax. Two well-known test statistics, namely, the Pearson’s chi-squared statistic and the
likelihood ratio test statistic are used as Zt by Zhang (2002), which are, respectively,

χ2
t =

n{Fn(t)−F0(t)}2

F0(t){1−F0(t)}

and

G2
t = 2n

{
Fn(t) log

Fn(t)
F0(t)

+ [1−Fn(t)] log
1−Fn(t)
1−F0(t)

}
,

where Fn(t) is the empirical distribution function of the sample.
Using χ2

t as Zt in (2), with different choices of weight functions results in traditional GOF
tests, for example, substituting dw1(t) = n−1F0(t)[1−F0(t)]dF0(t) and w2(t) = F0(t) in the first of
equations (2) generates Cramer–von Mises and Anderson–Darling statistics, respectively, as well
as w3(t) = n−1F0(t)[1−F0(t)], in the second which results in the famous Kolmogorov–Smirnov
statistic.

Put Fn(X(i)) =
i−0.5

n , and select w4(t) = 1, dw5(t) = F0(t)
−1[1−F0(t)]−1dF0(t) and dw6(t) =

Fn(t)
−1[1−Fn(t)]−1dFn(t) as weight functions. Then G2

t as Zt produces the following test statistics
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for the Weibull distribution, respectively,

ZA = −
n

∑
i=1

 logF0(X(i); η̂ , β̂ )
n− i+0.5

+
log
[
1−F0(Xi; η̂ , β̂ )

]
i−0.5

 ,

Zc =
n

∑
i=1

(
log

{
F0(X(i); η̂ , β̂ )−1 −1

(n−0.5)/(i−0.75)−1

})2

,

Zk = max
1≤i≤n

(
(i−0.5) log

(
i−0.5

nF0(X(i); η̂ , β̂ )

)

+(n− i+0.5) log

{
n− i+0.5

n(1−F0(X(i); η̂ , β̂ ))

})
,

where η̂ and β̂ are the MLEs. Clearly, the null hypothesis H0 will be rejected for large values
of ZA, Zc, and Zk.

2.3 Tests based on Torabi et al. (2016)
Recently, Torabi et al. (2016) defined the following discrepancy measure,

D(F0,F) =
∫ +∞

−∞
h
(

1+F0(x)
1+F(x)

)
dF(x) = EF

[
h
(

1+F0(x)
1+F(x)

)
dF(x)

]
,

where F0 and F are the CDF of two absolutely continuous random variables, EF [·] is the expec-
tation under F and h : (0,∞)→ R+ is a continuous function, decreasing on (0,1) and increasing
on (1,∞) with an absolute minimum at x = 1 such that h(1) = 0.

Torabi et al. (2016) used this measure as a criterion of GOF, to a given distribution F0. It
is obvious that D(F,F0) can be estimated by

Hn = D(F0,Fn) =
1
n

n

∑
i=1

h
(

1+F0(X(i))

1+ i/n

)
.

In addition, we construct a test statistic for Weibull distribution based on Hn as follows:

Hn =
1
n

n

∑
i=1

h

(
1+F0(X(i); η̂ , β̂ )

1+ i/n

)
,

where F0(x;η ,β ) is a Weibull CDF. Obviously, the null hypothesis will be rejected for large
values of Hn. The following two functions suggested by Torabi et al. (2016), are considered for
h,

h1(x) = x log(x)− x+1,

h2(x) =

(
x−1
x+1

)2

.
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The corresponding test statistics are

H(k)
n =

1
n

n

∑
i=1

hk

1+F0

(
X(i); η̂ , β̂

)
1+ i/n

 , k = 1,2.

Not that hk : [0,∞)→ R+,k = 1,2 are nonnegative functions, for which the absolute minimum
is x= 1, since hk(1) = 0,k = 1,2. Under H0, we expect that Fn(x)≈F0(x), and hence hk

(
1+F0(X)
1+Fn(x)

)
≈

0. So, Hn is approximately zero as H0 is true. Therefore, we reject H0 for large values of Hn.
We have the following result for all x > 0 from (Torabi et al., 2016, Proposition 2.3):

Corollary 1.

0 ≤ hk

(
1+F0(X)

1+Fn(X)

)
≤ max(hk(1/2),hk(2)) =

{
0.38629 k = 1,
0.1111 k = 2.

From transformed data, H(k)
n is the mean of hk(·), which for k = 1,2, is obtained as:

supp(H(1)
n ) = [0,0.38629], supp(H(2)

n ) = [0,0.11111].
Proposition 1. Let F1 be an arbitrary continuous CDF in H1. Then under the assumption that
the observed sample has CDF F1, the test based on Hn is consistent.
Proof. Based on the Glivenko–Cantelli theorem, for n large enough, we have Fn(x) ≈ F1(x), for
all x ∈ R. Therefore,

Hn =
1
n

n

∑
i=1

h

1+F0

(
X(i); η̂ , β̂

)
1+Fn(X(i))

=
1
n

n

∑
i=1

h

1+F0

(
Xi; η̂ , β̂

)
1+Fn(Xi)


≈ 1

n

n

∑
i=1

h

(
1+F0(Xi; η̂ , β̂ )

1+F1(Xi)

)
≈ 1

n

n

∑
i=1

h

(
1+F0(Xi; η̂ , β̂ )

1+F1(Xi)

)

→ EF1

[
h

(
1+F0(Xi; η̂ , β̂ )

1+F1(Xi)

)]
= D(F0,F1),asn −→ ∞.

Note that the convergence is valid according to the law of large numbers, and the divergence
between F0 and F1 is measured by D(F0,F1). Therefore, the test based on Hn is consistent by
Torabi et al. (2016).

Theorem 1. The considered test statistics are invariant under the power transformations G =
{gc : gc (x) = xc}.
Proof. It is enough to show that T (Xc) = T (X). Let Y = Xc. Then

FY (y) = P(Y ≤ y) = P(Xc ≤ y) = P
(

X ≤ y
1
c

)
= FX

(
y

1
c

)
,

= 1− exp

−(y
1
c

η

)β
= 1− exp

[
− y

β
c

ηβ

]
∼W

(
ηc,

β
c

)
,

⇒ yi = xc
i ⇒

{
η̂y = η̂c

x

β̂y =
β̂x
c
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We have

F0 (xc
i ) = 1− exp

[
−
(

yi

η̂y

)β̂y
]
= 1− exp

−( xc
i

η̂c
x

) β̂x
c

,

= 1− exp

[
−

(
xβ̂x

i

η β̂x
x

)]
= 1− exp

[
−
(

xi

η̂x

)β̂x
]
= F0 (xi).

Consequently, T (Xc) = T (X), and all test statistics based on the empirical distribution func-
tion are invariant.

3 Simulation study
A thorough analysis of all the proposed GOF tests has been made using Monte Carlo simulation.

3.1 Critical values and type I error
Firstly, we discuss the critical values and the actual sizes of the considered tests. We can reject
the null hypothesis H0 at significance level α, if the value of the test statistic is greater than
C(α). The critical value C(α) is calculated from the (1−α)-quantile of the distribution of the
test statistic under H0.

We cannot analyze analytically the distribution of the test statistics W 2,U2, D, V, A2, ZA,

Zc, Zk, H(1)
n , H(2)

n under the null hypothesis. Therefore, the Monte Carlo method is used to calcu-
late the critical value of the test statistics. For each test statistic W 2,U2, D,V, A2, ZA, Zc, Zk, H(1)

n ,
H(2)

n , 100,000 simulated random samples of size n are calculated from the Weibull distribution
with parameters 1 and 1.
Since α = 0.05 = 5000/100000, the 5000th order statistic is assessed to determine C(α). The
critical values obtained for the statistics W 2 −H(2)

n and sample sizes 10 ≤ n ≤ 100 are given in
Table 1.

Secondly, the type I error control using the 0.05 percentile is considered in Table 2. We find
the values of type I error around 5% and therefore, these values are acceptable.

3.2 Power study
For power comparison, we consider the following alternatives. These alternatives have different
hazard rate: increasing hazard rate (IHR), decreasing hazard rate (DHR), bathtub shaped
hazard rate (BT), and upside-down hazard rate (UBT). The usual distributions are Gamma
G , Lognormal L N , Inverse-Gamma I G , and Inverse-Gaussian I S . Some distributions with
CDF F(x) are as follows:

• Exponentiated Weibull distribution (Mudholkar and Srivastava 1993) E W (θ ,η ,β )

F(x) =
[
1− e−(x/η)β

]θ
, θ ,η ,β > 0.
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Table 1: Critical values of the test statistics at level α = 0.05.

n W 2 U2 D V A2 ZA Zc Zk H(1)
n H(2)

n

10 0.1945 0.1884 0.2606 0.4373 0.7243 13.8336 7.0158 1.0934 0.003136 0.003136
20 0.2007 0.1945 0.1892 0.3181 0.7386 17.6030 9.4311 1.4670 0.001532 0.000794
30 0.2035 0.1973 0.1566 0.2641 0.7494 19.9790 10.9320 1.6911 0.001016 0.000518
40 0.2042 0.1976 0.1367 0.2301 0.7519 21.7873 12.0246 1.8413 0.000755 0.000385
50 0.2048 0.1989 0.1228 0.2073 0.7499 23.1606 12.7047 1.9436 0.000604 0.000307
60 0.2050 0.1988 0.1120 0.1894 0.7484 24.3338 13.3967 2.0456 0.000502 0.000257
70 0.2052 0.1991 0.1044 0.1761 0.7503 25.3784 13.9913 2.1279 0.000429 0.000217
80 0.2054 0.1995 0.0976 0.1649 0.7535 26.2529 14.5114 2.2006 0.000379 0.000190
90 0.2056 0.1995 0.0923 0.1558 0.7552 27.0854 14.9487 2.2666 0.000334 0.000169
1000.2059 0.1996 0.0875 0.1480 0.7536 27.7776 15.2821 2.3113 0.000301 0.000152

Table 2: The actual size of the tests.

W (η ,β ) n W 2 U2 D V A2 ZA Zc Zk H(1)
n H(2)

n

W (1,0.5) 10 0.0504 0.0502 0.0497 0.0492 0.0500 0.0507 0.0501 0.0501 0.0494 0.0501
W (1,0.5) 20 0.0511 0.0514 0.0516 0.0525 0.0516 0.0501 0.0511 0.0499 0.0499 0.0498
W (1,0.5) 30 0.0491 0.0490 0.0499 0.0499 0.0487 0.0488 0.0502 0.0481 0.0500 0.0500
W (1,0.5) 40 0.0495 0.0507 0.0484 0.0500 0.0494 0.0494 0.0498 0.0485 0.0502 0.0509
W (1,0.5) 50 0.0490 0.0484 0.0489 0.0485 0.0499 0.0498 0.0510 0.0504 0.0498 0.0487
W (1,1) 10 0.0509 0.0511 0.0510 0.0516 0.0518 0.0501 0.0521 0.0528 0.0494 0.0491
W (1,1) 20 0.0512 0.0511 0.0513 0.0511 0.0515 0.0503 0.0508 0.0499 0.0515 0.0516
W (1,1) 30 0.0507 0.0505 0.0496 0.0494 0.0496 0.0494 0.0497 0.0493 0.0492 0.0486
W (1,1) 40 0.0495 0.0499 0.0496 0.0495 0.0498 0.0501 0.0507 0.0492 0.0503 0.0490
W (1,1) 50 0.0501 0.0497 0.0492 0.0503 0.0508 0.0516 0.0504 0.0513 0.0484 0.0500
W (1,2) 10 0.0523 0.0519 0.0521 0.0515 0.0529 0.0496 0.0519 0.0535 0.0500 0.0488
W (1,2) 20 0.0512 0.0514 0.0518 0.0504 0.0505 0.0489 0.0499 0.0494 0.0511 0.0501
W (1,2) 30 0.0485 0.0481 0.0492 0.0489 0.0491 0.0509 0.0498 0.0506 0.0494 0.0503
W (1,2) 40 0.0498 0.0505 0.0497 0.0499 0.0499 0.0500 0.0518 0.0498 0.0507 0.0481
W (1,2) 50 0.0504 0.0502 0.0497 0.0509 0.0507 0.0509 0.0506 0.0521 0.0487 0.0514
W (1,4) 10 0.0512 0.0503 0.0511 0.0504 0.0512 0.0506 0.0521 0.0521 0.0498 0.0502
W (1,4) 20 0.0503 0.0508 0.0503 0.0511 0.0499 0.0495 0.0498 0.0486 0.0513 0.0503
W (1,4) 30 0.0487 0.0481 0.0490 0.0491 0.0492 0.0514 0.0511 0.0506 0.0507 0.0492
W (1,4) 40 0.0499 0.0501 0.0498 0.0496 0.0495 0.0501 0.0508 0.0488 0.0501 0.0493
W (1,4) 50 0.0515 0.0511 0.0511 0.0522 0.0519 0.0507 0.0507 0.0515 0.0482 0.0499

• Generalized Gamma distribution (Stacy 1962) G G (κ,η ,β )

F(x) =
1

Γ(k)
γ
(

k,(x/η)β
)
, k,η ,β > 0,

where γ(s,x) =
∫ x

0
vs−1e−vdv.
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• Distribution I of Dhillon (1981) D1(β ,b) with CDF:

F(x) = 1− e−
[
e(βx)b−1

]
, b,β > 0.

• Distribution II of Dhillon (1981) D2(λ ,b) with CDF:

F(x) = 1− e−(ln(λx+1))b+1
, λ > 0, b ≥ 0.

• Hjorth (1980) distribution H (β ,δ ,θ) with CDF:

F(x) = 1− e−
δx2

2

(1+βx)θ/β , β ,δ ,θ > 0.

• Chen (2000) distribution C (λ ,β ) with CDF:

F(x) = 1− eλ
(

1−exB
)
, λ ,β > 0.

In short, the alternative distributions are categorized by the shape of their hazard rate in Table
3.

Table 3: Alternative distributions.

IHR G (2)≡ G (2,1) G (3)≡ G (3,1) E W 1 ≡ E W (6.5,20,6)
D2(2)≡ D2(1,2)

UBT L N (0.8)≡ L N (0,0.8) I G (3)≡ I G (3,1) E W 4 ≡ E W (4,12,0.6)
I S (0.25)≡ I S (1,0.25) I S (4)≡ I S (1,4)

DHR G (0.2)≡ G (0.2,1) E W 2 ≡ E W (0.1,0.01,0.095) H (0)≡ H (0,1,1)
D2(2)≡ D2(1,0)

BT E W 3 ≡ E W (0.1,100,5) G G 1 ≡ G G (0.1,1,4) G G 2 ≡ G G (0.2,1,3)
C (0.4)≡ C (2,0.4) D1(0.8)≡ D1(1,0.8)

Monte Carlo simulation is used to calculate the power of the tests W 2, D,V, U2, A2, ZA, Zc, Zk,
H(1)

n , H(2)
n . This process is done 100000 times for samples 10, 20, and 50. The power of the

corresponding test was estimated by the frequency of the event the test statistics is larger than
the critical point. The power of tests is presented in Tables 4–6. The maximal power is shown
in bold type for each alternative.

Tables 4–6 show that there is no single test can be considered as the best against all alterna-
tives. Nevertheless, when considering most alternatives, the tests U2, ZA, and Zc statistics have
the most power.

In addition, one notable aspect is that the effectiveness of the tests is closely connected
to the pattern of the hazard rate in the simulated distribution. The patterns seem to exhibit
similar behavior for the DHR and BT hazard rates for large sizes of n, as well as for the IHR
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Table 4: Power results of the tests for n = 10.

Alternative W 2 U2 D V A2 ZA Zc Zk H(1)
n H(2)

n

IHR
G (2) 0.0538 0.0554 0.0531 0.0550 0.0493 0.0261 0.0495 0.0478 0.0503 0.0496
G (3) 0.0599 0.0616 0.0575 0.0606 0.0534 0.0179 0.0546 0.0493 0.0511 0.0514
E W 1 0.0809 0.0824 0.0738 0.0787 0.0719 0.0085 0.0779 0.0602 0.0502 0.0496
D2(2) 0.0664 0.0672 0.0620 0.0657 0.0619 0.0284 0.0664 0.0566 0.0509 0.0500
UBT
L N (0.8) 0.1110 0.1120 0.0959 0.1038 0.1004 0.0036 0.1139 0.0806 0.0502 0.0494
I G (3) 0.2187 0.2170 0.1747 0.1998 0.2072 0.0008 0.2383 0.1582 0.0496 0.0506
E W 4 0.0563 0.0538 0.0571 0.0527 0.0626 0.0812 0.0645 0.0653 0.0515 0.0504
I S (0.25) 0.1835 0.1826 0.1496 0.1690 0.1705 0.0005 0.1961 0.1289 0.0513 0.0488
I S (4) 0.1112 0.1116 0.0961 0.1036 0.1006 0.0029 0.1131 0.0790 0.0504 0.0483
DHR
G (0.2) 0.0982 0.0882 0.0930 0.0800 0.1208 0.1533 0.1226 0.1196 0.0512 0.0503
E W 2 0.0516 0.0516 0.0522 0.0513 0.0524 0.0520 0.0516 0.0529 0.0503 0.0490
H (0) 0.0509 0.0508 0.0511 0.0518 0.0513 0.0486 0.0511 0.0520 0.0503 0.0505
D2(0) 0.1488 0.1484 0.1238 0.1370 0.1393 0.0097 0.1562 0.1098 0.0507 0.0511
BT
E W 3 0.0806 0.0812 0.0703 0.0779 0.0720 0.0085 0.0752 0.0587 0.0500 0.0480
G G 1 0.1307 0.1161 0.1202 0.1017 0.1615 0.1834 0.1608 0.1539 0.0504 0.0506
G G (2) 0.0979 0.0876 0.0926 0.0780 0.1195 0.1530 0.1218 0.1175 0.0503 0.0492
C (0.4) 0.0582 0.0549 0.0594 0.0539 0.0659 0.0840 0.0654 0.0687 0.0517 0.0482
D1(0.8) 0.0685 0.0621 0.0678 0.0595 0.0800 0.1087 0.0832 0.0841 0.0512 0.0514

and UBT hazard rates, with a few exceptions.The powerful tests for against different hazard
rate are shown in Table 7. In the subsequent analysis, we evaluate the GOF tests within each
specific group. The powerful tests for all shape of hazard rates are the test statistics ZA and Zc.

4 Application to real data sets
In this section, we present the application of GOF tests on industrial data to fit with Weibull
distribution. We consider two teal data examples as follows.

Example 1. Datsiou and Overend (2018) considered the concerns glass surface strength data,
and the number of data is n = 18. The data are
24.12, 32.98, 39.71, 24.13, 35.91, 49.10, 28.52, 35.92, 52.43, 29.18, 36.38, 52.46, 29.67, 37.60,
52.61, 30.48, 37.70, 61.72.

Example 2. The second data set is the waiting time of n= 100 bank customers using by Ghitany
et al. (2007). The date are
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3, 4.3,
4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1,
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Table 5: Power results of the tests for n = 20.

Alternative W 2 U2 D V A2 ZA Zc Zk H(1)
n H(2)

n

IHR
G (2) 0.0625 0.0634 0.0581 0.0610 0.0590 0.0179 0.0621 0.0488 0.0487 0.0516
G (3) 0.0770 0.0775 0.0670 0.0722 0.0729 0.0093 0.0817 0.0590 0.0489 0.0521
E W 1 0.1298 0.1284 0.1055 0.1143 0.1308 0.0024 0.1582 0.1024 0.0498 0.0499
D2(2) 0.0895 0.0903 0.0755 0.0833 0.0893 0.0217 0.1049 0.0732 0.0509 0.0517
UBT
L N (0.8) 0.2084 0.2034 0.1610 0.1791 0.2167 0.0003 0.2636 0.1731 0.0512 0.0511
I G (3) 0.4645 0.4526 0.3525 0.4142 0.4877 0.0000 0.5623 0.4301 0.0489 0.0509
E W 4 0.0627 0.0582 0.0614 0.0551 0.0717 0.1028 0.0776 0.0751 0.0499 0.0522
I S (0.25) 0.3930 0.3787 0.2878 0.3421 0.4147 0.0000 0.4976 0.3698 0.0486 0.0503
I S (4) 0.2091 0.2025 0.1604 0.1795 0.2179 0.0002 0.2691 0.1760 0.0510 0.0511
DHR
G (0.2) 0.1641 0.1412 0.1411 0.1155 0.2006 0.2264 0.2128 0.1824 0.0502 0.0501
E W 2 0.0499 0.0495 0.0484 0.0495 0.0500 0.0556 0.0510 0.0496 0.0504 0.0515
H (0) 0.0500 0.0500 0.0495 0.0495 0.0504 0.0506 0.0518 0.0496 0.0501 0.0506
D2(0) 0.2986 0.2951 0.2300 0.2642 0.3077 0.0035 0.3446 0.2458 0.0507 0.0497
BT
E W 3 0.1306 0.1289 0.1055 0.1147 0.1328 0.0024 0.1563 0.1018 0.0484 0.0492
G G 1 0.2376 0.2064 0.1966 0.1661 0.2927 0.2755 0.3031 0.2448 0.0485 0.0512
G G (2) 0.1639 0.1408 0.1406 0.1149 0.2016 0.2270 0.2134 0.1825 0.0489 0.0517
C (0.4) 0.0671 0.0619 0.0635 0.0579 0.0764 0.1068 0.0804 0.0771 0.0503 0.0507
D1(0.8) 0.0904 0.0797 0.0834 0.0703 0.1076 0.1513 0.1193 0.1083 0.0500 0.0509

7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0,
11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4,
15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23, 27, 31.6, 33.1, 38.5.

Figure 1 shows the empirical distribution function of the considered data set of glass and
the waiting time of bank customers, respectively. We apply the GOF test for the above data
examples. The values of each test statistics are computed and then compared with corresponding
critical value at significance level 0.05. The results are shown in Table 8.

The results of Table 8 show that the value of each test statistic is smaller than the corre-
sponding critical value. Therefore, the Weibull hypothesis is not rejected at the significance
level of 0.05. Hence, we can infer that the probability distribution of these data sets are Weibull
distribution.

5 Conclusion
In this paper, we evaluated the empirical distribution function-based GOF tests for the Weibull
distribution and showed that the considered tests have a good performance. Critical points of
the test statistics have been computed, and then the actual sizes of the considered test have
been obtained. Through Monte Carlo simulations, we have carried out an extensive power study
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Table 6: Power results of the tests for n = 50.

Alternative W 2 U2 D V A2 ZA Zc Zk H(1)
n H(2)

n

IHR
G (2) 0.0849 0.0833 0.0748 0.0764 0.0875 0.0106 0.1014 0.0765 0.0498 0.0487
G (3) 0.1256 0.1208 0.1043 0.1071 0.1347 0.0035 0.1618 0.1177 0.0495 0.0481
E W 1 0.2858 0.2702 0.2108 0.2317 0.3225 0.0001 0.3920 0.2902 0.0497 0.0483
D2(2) 0.1609 0.1600 0.1227 0.1409 0.1781 0.0125 0.2134 0.1484 0.0509 0.0488
UBT
L N (0.8) 0.4981 0.4739 0.3698 0.4240 0.5608 0.0000 0.6539 0.5373 0.0486 0.0487
I G (3) 0.8822 0.8661 0.7625 0.8418 0.9184 0.0000 0.9559 0.9226 0.0505 0.0501
E W 4 0.0841 0.0758 0.0778 0.0676 0.0974 0.1360 0.1052 0.1010 0.0518 0.0482
I S (0.25) 0.8396 0.8127 0.6825 0.7908 0.8951 0.0000 0.9558 0.9285 0.0511 0.0489
I S (4) 0.5030 0.4730 0.3705 0.4258 0.5690 0.0000 0.6766 0.5656 0.0495 0.0488
DHR
G (0.2) 0.3848 0.3315 0.3097 0.2606 0.4626 0.3573 0.4846 0.3825 0.0493 0.0477
E W 2 0.0523 0.0521 0.0515 0.0510 0.0534 0.0564 0.0524 0.0518 0.0499 0.0495
H (0) 0.0504 0.0505 0.0498 0.0496 0.0505 0.0494 0.0515 0.0496 0.0494 0.0488
D2(0) 0.6509 0.6404 0.5292 0.5918 0.6910 0.0005 0.7194 0.6150 0.0508 0.0486
BT
E W 3 0.2891 0.2743 0.2162 0.2360 0.3264 0.0002 0.3944 0.2917 0.0500 0.0486
G G 1 0.5773 0.5131 0.4608 0.4144 0.6791 0.4378 0.7136 0.5694 0.0512 0.0484
G G (2) 0.3867 0.3322 0.3106 0.2618 0.4662 0.3590 0.4876 0.3847 0.0499 0.0482
C (0.4) 0.1023 0.0921 0.0917 0.0809 0.1220 0.1436 0.1267 0.1150 0.0512 0.0470
D1(0.8) 0.1708 0.1458 0.1449 0.1191 0.2089 0.2210 0.2231 0.1891 0.0490 0.0489

Table 7: The powerful test statistics in various shape of hazard rate.
IHR UBT DHR BT

U2 &Zc Zc &ZA ZA, Zc &Zk ZA &Zc

on the considered tests. It is shown that some of the tests outperform in most cases all other
tests. Finally, we have used a real data set and have illustrated how the considered test can be
applied to test the GOF for the Weibull distribution when a random sample is available.
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