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Abstract. Copula theory is essentially based on the use of multivariate functions, commonly
called copulas. These functions provide a versatile toolset for capturing a broad spectrum of
dependence structures, highlighting their indispensability in a multitude of applied domains.
However, in light of the evolving complexities inherent in real-world data, there is a growing de-
mand for pioneering copula constructions. In this paper, our main goal is to increase the field of
variable-power copulas by introducing an innovative Farlie–Gumbel–Morgenstern (FGM)-type
power copula. It is distinguished by a unique one-parameter formulation that recovers the in-
dependence copula. In the main part, we establish its mathematical validity, which is based
on differentiation techniques, appropriate factorizations, and two complementary logarithmic
inequalities. Then we provide a comprehensive exploration of its modeling properties, with a
focus on its negative dependence through the beta medial correlation, rho of Spearman and tau
of Kendall. The corresponding copula data generation is examined with different values of the
parameter. A new bivariate normal distribution is also derived, and its shapes are discussed.
Finally, the minimum and maximum of two random variables connected through the proposed
copula are examined from a distributional viewpoint. Our findings contribute to the advance-
ment of copula theory, thereby enhancing its practical utility across a wide range of disciplines.

Keywords: Bivariate distributions; Bivariate plots; Copula approach; Correlation measures; Data genera-
tion; Dependence model; Inequalities.

1 Introduction
Copula theory, first introduced by Sklar (1959), has transformed into an indispensable tool for
analyzing multivariate data and characterizing the interrelationships among random variables.
This theory is based on copulas, which are pivotal multivariate functions enabling the separation
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of marginal distributions from the underlying dependence structure. This separation empowers
practitioners to independently model and estimate joint distributions, making copulas highly
adaptable and applicable in various domains such as finance (as discussed in Joe 2015), insurance
(as studied in Embrechts et al. 2001), and environmental sciences (as detailed in Becherini et al.
2013), among many others. For a comprehensive examination of the theoretical and practical
aspects of copulas, we recommend consulting Nelsen (2006) and Durante and Sempi (2016).
Recent advancements are documented in Susam (2020a), Susam (2020b), Chesneau (2022),
Chesneau (2023), Chesneau (2021b), Michimae and Emura (2022), Shih et al. (2002), El Ktaibi
et al. (2022), and Yeh et al. (2023). These references collectively provide a solid foundation for
better understanding and applying copula theory.

In the current context, there is a growing demand for the development of new copula construc-
tions, driven by several compelling factors. First, existing copula families often have limitations
in capturing the complexities of dependence structures marked by asymmetric behavior of tails
or outliers, which are prevalent in various domains. Second, real-world data often exhibit com-
plex, nonlinear, or nonmonotonic dependence patterns that traditional copula models struggle
to accurately represent. Finally, the rise of high-dimensional datasets requires copula models
capable of efficiently adapting to large dependence structures.

The development of innovative copula families to overcome these limitations is thus of
paramount importance. A recent contribution to the subject is the variable-power copula family,
briefly presented below. In the bivariate setting, a variable-power copula is characterized by the
following general expression:

G(x,y) = xP(x,y)yQ(x,y), (x,y) ∈ [0,1]2. (1)

Here, P(x,y) and Q(x,y) are bivariate functions that adhere to specific conditions while satisfying
the following requirements: G(0,0) = 0, G(0,1) = 0, G(1,0) = 0, and G(1,1) = 1. It is evident that
when P(x,y) = Q(x,y) = 1, the result is the independence copula, that is, G(x,y) = xy = Π(x,y).
The investigation of scenarios, where P(x,y) = 1 and Q(x,y) is a function exclusively dependent
on x, was explored in Chesneau (2023). This exploration led to the discovery of several new
bivariate copulas with varying power, providing new insights into dependence patterns that
extend beyond the conventional framework.

On the other hand, the Farlie-Gumbel-Morgenstern (FGM) copula can be considered as a
cornerstone of copula theory. Indeed, it has received considerable attention in recent research
due to its versatility in modeling multivariate dependence structure. This widespread inter-
est has stimulated innovative developments in our understanding and use of copulas. From a
mathematical point of view, the FGM copula is defined by the following expression:

GFGM(x,y) = xy[1+a(1− x)(1− y)], (x,y) ∈ [0,1]2,

with a ∈ [−1,1]. The primary advantage of the FGM copula lies in its simplicity, ease of manip-
ulation, and its capacity to capture both negative and positive dependences. However, it does
have limitations, notably its restricted ability to represent diverse copula density shapes and
its moderate degree of dependence. Recent research efforts have been devoted to improving its
flexibility by introducing modifications and extensions, thereby providing more robust tools for
risk assessment, financial modeling, and various other applications. Notably, several articles,
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such as Morgenstern (1956), Celebioglu (1997), Bairamov et al. (2001), Rodríguez-Lallena and
Úbeda-Flores (2004), Domma and Giordano (2012), Mirhosseini et al. (2015), Bairamov and
Kotz (2002), Amini et al. (2011), and Chesneau (2021a), have contributed by introducing var-
ious modified versions of the FGM copula. These advancements are continually expanding the
horizons of copula theory and its practical applications across diverse fields.

In this article, we introduce an innovative copula expression that merges the fundamen-
tal principles of variable-power and FGM copulas. Specifically, by selecting P(x,y) = Q(x,y) =
GFGM(x,y)/(xy) in (1), our proposed copula exhibits the following distinctive expression:

G(x,y) = xGFGM(x,y)/(xy)yGFGM(x,y)/(xy), (x,y) ∈ [0,1]2,

which can also be represented in a more concise manner as follows:

G(x,y) = (xy)1+a(1−x)(1−y), (x,y) ∈ [0,1]2.

It is worth noting that, at this stage, the parameter a remains undetermined, with the exception
of the trivial case where a = 0 giving the independence copula. The proposed copula stands
out primarily due to its novel expression, which, to the best of our knowledge, has not been
examined previously. In the main result, we determine a range of values for a making it valid in
the mathematical sense. The proof is based on differentiation, appropriate factorizing, and two
complementary logarithmic inequalities. Then we investigate its properties through a compre-
hensive analysis that encompasses analytical, graphical, and numerical methods. A focus is put
on diverse kinds of negative dependence. In addition, the data generation based on the proposed
copula is described, and a new bivariate normal distribution is derived. Finally, a distributional
perspective is used to analyze the minimum and maximum of two random variables connected
by the suggested copula.

The article is structured as follows: In Section 2, we introduce the variable-power FGM-type
copula. Section 3 delves into an in-depth exploration of its key characteristics. Section 4 contains
complementary studies to highlight some computational or distributional aspects. Finally, in
Section 5, we provide our concluding remarks.

2 A variable-power FGM-type copula
2.1 Notion of copula
Before introducing our novel variable-power copula, it is essential to provide the notion of copula
in the standard bivariate absolutely continuous (SBAC) context.

Lemma 1. Nelsen (2006) In the SBAC context, we characterize a copula as a bivariate function,
denoted as B(x,y), defined over [0,1]2, which is twice continuously differentiable on (0,1)2 and
satisfies the following conditions:

C1: B(x,0) = 0, B(0,y) = 0, B(x,1) = x, and B(1,y) = y,

C2: ∂x,yB(x,y) =
∂ 2

∂x∂y
B(x,y)≥ 0.
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In fact, the original definition of a bivariate copula considers the 2-increasing condition,
which is equivalent to C2 in the SBAC setting. From a mathematical point of view, proving C2
is often more difficult than C1, as it may require complex differentiations, factorizations, and
inequalities. We refer to Nelsen (2006) for all the technical details behind the notion of copula
in the SBAC context. We will adopt this notion in this article.

2.2 Novel copula
The upcoming result emphasizes the variable-power FGM-type copula under consideration.

Proposition 1. The bivariate function defined by

G(x,y) = (xy)1+a(1−x)(1−y), (x,y) ∈ [0,1]2, (2)

with a ∈ [0,1], is a valid copula.

Proof. Let us examine C1 and C2 outlined in Lemma 1 with the proposed bivariate function,
assuming that a ∈ [0,1]. Beginning with C1, for any x ∈ [0,1], since 1+ a(1− x) ≥ 0, we can
observe that

G(x,0) = (x×0)1+a(1−x)(1−0) = 0.

Likewise, for any y ∈ [0,1], we find that G(0,y) = 0. Furthermore, for any x ∈ [0,1], we have

G(x,1) = (x×1)1+a(1−x)(1−1) = x.

Similarly, for any y ∈ [0,1], we can determine that G(1,y) = y. Thus, C1 is satisfied.
Now, let us delve into C2. By employing conventional differentiation principles and con-

ducting a comprehensive factorization, we arrive at the following result:

∂x,yG(x,y) =(xy)a(1−x)(1−y)×
{

ax(y−1)+a(x−1)y+axy log(xy)

+ [a(1− x)(1− y)+ax(y−1) log(xy)+1][a(1− x)(1− y)+a(x−1)y log(xy)+1]
}

=(xy)a(1−x)(1−y){ax(y−1)+a(x−1)y+axy log(xy)+2a(1− x)(1− y)+1

+a(x−1)y log(xy)+a(y−1)x log(xy)

+a2(1− x)2(1− y)2 −a2(1− x)2(1− y)y log(xy)−a2(1− x)(1− y)2x log(xy)

+a2(1− x)(1− y)xy[log(xy)]2
}

=(xy)a(1−x)(1−y)[R(x,y)+S(x,y)],

where

R(x,y) =ax(y−1)+a(x−1)y+axy log(xy)+2a(1− x)(1− y)+1

+a(1− x)y[− log(xy)]+a(1− y)x[− log(xy)]

and

S(x,y) =a2(1− x)2(1− y)2 +a2(1− x)2(1− y)y[− log(xy)]

+a2(1− x)(1− y)2x[− log(xy)]+a2(1− x)(1− y)xy[log(xy)]2.
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Since (x,y) ∈ (0,1)2 and a ∈ [0,1], it is obvious that (xy)a(1−x)(1−y) ≥ 0. Let us now prove that we
have R(x,y)≥ 0 and S(x,y)≥ 0.

With regard to S(x,y), since (x,y)∈ (0,1)2, we have x≥ 0, y≥ 0, 1−x≥ 0, 1−y≥ 0, − log(xy)≥
0, and, obviously, a2 ≥ 0 (1− x)2 ≥ 0, (1− y)2 ≥ 0, and [log(xy)]2 ≥ 0. So, as a direct sum of
nonnegative main terms, we have S(x,y)≥ 0.

Concerning R(x,y), the steps are more technical. The following logarithmic inequality is
well known: log(1+ u) ≤ u for u > −1. As a result, since (x,y) ∈ (0,1)2, we have log(xy) =
log[1+(xy−1)]≤ xy−1, so − log(xy)≥ 1− xy. On the other hand, the following complementary
logarithmic inequality is well known too: log(1+ u) ≥ u/(1+ u) for u > −1. As a result, since
(x,y)∈ (0,1)2, we have log(xy)= log[1+(xy−1)]≥ (xy−1)/[1+(xy−1)]= (xy−1)/(xy). Therefore,
since a ≥ 0, we have

R(x,y)≥ ax(y−1)+a(x−1)y+a(xy−1)+2a(1− x)(1− y)+1

+a(1− x)y(1− xy)+a(1− y)x(1− xy)

= 2ax2y2 −ax2y−axy2 +3axy−2ax−2ay+a+1

= axy[xy+(1− x)(1− y)+1−a]+a(1− x)(1− y)+(1−ax)(1−ay).

Since a ∈ [0,1] specifically and (x,y) ∈ (0,1)2, it is clear that axy ≥ 0, xy+ (1− x)(1− y) ≥ 0,
1−a ≥ 0, a(1− x)(1− y)≥ 0 and (1−ax)(1−ay)≥ (1−a)2 ≥ 0. Hence, we have R(x,y)≥ 0.

The above results imply that ∂x,yG(x,y)≥ 0. Thus, C2 is satisfied. We conclude that G(x,y)
is a valid copula.

We refer to the copula mentioned in (2) as the variable-power FGM (VPFGM) copula. To
the best of our understanding, this is a new addition to the variable-power copula family, as
discussed in Chesneau’s earlier work (see Chesneau 2022, 2023).

Some related comments are formulated below. First, the independence copula is recovered
by taking a = 0, and we can write the VPFGM copula as

G(x,y) = [Π(x,y)]1+a(1−x)(1−y), (x,y) ∈ [0,1]2.

We thus see how the independence structure is modified with a variable-power term.
We can also express it in an exponential-logarithmic form as follows:

G(x,y) = exp{[1+a(1− x)(1− y)] log(xy)}

or, eventually,

G(x,y) = exp{[1+a(1− x)(1− y)] log(x)+ [1+a(1− x)(1− y)] log(y)} .

By analyzing these expressions, the VPFGM copula is distinguished from the extreme value
copula family because no function of log(x)/ log(xy) or log(y)/ log(xy) can be exhibited in the
power-variable term. Furthermore, we can demonstrate that it lacks associativity, which excludes
its classification in the Archimedean copula family. Another comment is that we can write it as

G(x,y) = xyexp [a(1− x)(1− y)ϕ(xy)] , (x,y) ∈ [0,1]2,
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with ϕ(t) = log(t). Under this form, we remark a strong connection with the Celebioglu–Cuadras
copula, which is defined with ϕ(t) = 1 (see Celebioglu 1995). This concordance in form is
intriguing and perhaps reveals an unidentified copula family.

With the use of the software R and the package plotly (see R Core Team 2016), Figure 1
illustrates Proposition 1 by plotting the VPFGM copula for selected values of a ∈ [0,1].

(a) (b)

(c) (d)

Figure 1: Plots of the intensity zones of the VPFGM copula for (a) a = 0.05, (b) a = 0.3, (c)
a = 0.7, and (d) a = 1.

We can discern the characteristic circular intensity zones indicative of a valid copula. The
remainder of the study considers the associated copula density and explores several of its pivotal
characteristics.
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3 Copula density and characteristics

3.1 Copula density

The copula density is a crucial component in achieving a comprehensive understanding of a
copula, particularly with regard to its various shapes and their implications. In our context, the
VPFGM copula density is given as

g(x,y) =∂x,yG(x,y) = (xy)a(1−x)(1−y)×
{

ax(y−1)+a(x−1)y+axy log(xy)

+ [a(1− x)(1− y)+ax(y−1) log(xy)+1][a(1− x)(1− y)+a(x−1)y log(xy)+1]
}
,

(x,y) ∈ (0,1)2. (3)

This function is relatively complex, primarily due to the presence of the logarithmic term log(xy).
However, with the assistance of mathematical software, such as R, its implementation becomes
straightforward. Figure 2 showcases the VPFGM copula density for a range of selected values
of a ∈ [0,1].

A wide panel of different colored zones is observed, highlighting the versatility of the VPFGM
copula density. The most pronounced and intense zones are particularly noticeable at the co-
ordinates (0,1) and (1,0). This observation becomes increasingly evident as the values of a
increase.

For a deeper analysis, we can also visualize the shapes of the VPFGM copula density. Uti-
lizing the R package plot3D, Figure 3 showcases some of them for selected values of a ∈ [0,1].

By examining the relationship between Figures 2 and 3, we gain deeper insights into the
behavior of the copula density, particularly its characteristics around the critical corner points.

To begin a discussion involving the copula density, let us recall that Proposition 1 holds for
a ∈ [0,1]. However, it is not claimed that [0,1] is the optimal range of values of a. Based on
Lemma 1, we can remark that C1 holds for a > −1. Furthermore, we have the following value
for the copula density, among the rare comprehensive ones:

g
(

1
2
,1
)
= 1− a

2
.

Since a valid copula density must be nonnegative by C2, the inequality a ≤ 2 is a necessary
condition.

On the other hand, numerical tests exclude the negative values for a; in this case, we can
always find (xι ,yι) ∈ (0,1)2 such that g(xι ,yι) < 0, with xι approaching 1 and yι approaching
0; C2 is not satisfied. For example, by taking a = −0.2, xι = 0.999 and yι = 0.001, we have
g(xι ,yι)≈−0.178378 < 0.

In addition, as a result of a more deep computational study, the situation is not clarified for
a ∈ (1,2]; C2 is satisfied in many pointwise cases. Thus, we conjecture that the optimal range
of values for a is an interval Iop such that [0,1]⊆ Iop ⊆ [0,2], but more investigations are needed
for its identification.
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(a) (b)

(c) (d)

Figure 2: Plots of the intensity zones of the VPFGM copula density for (a) a = 0.05, (b) a = 0.3,
(c) a = 0.7, and (d) a = 1.
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Figure 3: Plots of the shapes of the VPFGM copula density for (a) a = 0.05, (b) a = 0.3, (c)
a = 0.7, and (d) a = 1.
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3.2 Characteristics
We now explore the main properties of the VPFGM copula. Clearly, it is diagonally symmetric
because, for any (x,y)∈ [0,1]2, we have G(x,y) = G(y,x). Based on the well-known copula theory,
the Fréchet-Hoeffding bounds hold (see Nelsen 2006). They imply the following inequalities:
max(x+ y−1,0)≤ G(x,y)≤ min(x,y), that is,

max(x+ y−1,0)≤ (xy)1+a(1−x)(1−y) ≤ min(x,y).

We can easily establish the upper bound by direct proof, while the lower bound seems less
immediately verifiable.

Another direct and important property of a copula is the Lipschitz condition of constant 1,
that is, for any (x1,x2,y1,y2) ∈ [0,1]4, we have

|G(x2,y2)−G(x1,y1)| ≤ |x2 − x1|+ |y2 − y1|,

which, in expanded form, corresponds to

|(x2y2)
1+a(1−x2)(1−y2)− (x1y1)

1+a(1−x1)(1−y1)| ≤ |x2 − x1|+ |y2 − y1|.

On the other hand, the function ψ(x,y) = ∂yG(x,y) = ∂G(x,y)/(∂y) is nondecreasing and satisfies
0 ≤ ψ(x,y)≤ 1. Since

ψ(x,y) = x(xy)a(1−x)(1−y) [1+a(1− x)(1− y)−a(1− x)y log(xy)] , (4)

the following inequalities hold:

0 ≤ x(xy)a(1−x)(1−y) [1+a(1− x)(1− y)−a(1− x)y log(xy)]≤ 1.

Let us mention that ψ(x,y) will play an important role in some coming parts, especially in the
definition of integral-type correlation measures and the data generation process related to the
proposed copula.

More technical properties are described below.
The VPFGM copula satisfies a notable weighted geometric result. Indeed, by setting G(x,y;a)=

G(x,y), for any (x,y) ∈ [0,1]2 and (a1,a2,b) ∈ [0,1]3, we have

[G(x,y;a1)]
b[G(x,y;a2)]

1−b =
[
(xy)1+a1(1−x)(1−y)

]b [
(xy)1+a2(1−x)(1−y)

]1−b

= (xy)1+[ba1+(1−b)a2](1−x)(1−y) = G[x,y;ba1 +(1−b)a2].

The tail dependence coefficients for the lower left (LL), lower right (LR), upper left (UL), and
upper right (UR) directions can be calculated using the formulas provided in Nelsen (2006) and
Jaworski (2023). They can be obtained through conventional limit methods in the following
manner:

λLL = lim
x→0

G(x,x)
x

= lim
x→0

x1+2a(1−x)2
= lim

x→0
x2a+1 = 0,

λLR = lim
x→0

x−G(1− x,x)
x

= lim
x→0

x− [(1− x)x]1+ax(1−x)

x
= lim

x→0
x[1−a log(x)] = 0.
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Since G(x,y) is diagonally symmetric, we have

λUL = lim
x→0

x−G(x,1− x)
x

= λRL = 0

and

λUR = lim
x→1

1−2x+G(x,x)
1− x

= lim
x→1

1−2x+ x2+2a(1−x)2

1− x
= lim

x→1
[(1− x)−2a(1− x)2] = 0,

respectively. As a result, the VPFGM copula is completely free of tail dependence, which is
relatively rare for a variable-power copula (see Chesneau 2022, 2023).

For any (x,y) ∈ [0,1] and a ∈ [0,1], since 1+a(1− x)(1− y)≥ 1, we have

G(x,y) = (xy)1+a(1−x)(1−y) ≤ xy,

which implies that the VPFGM copula is negatively quadrant dependent. Also, owing to this
inequality, it is obvious that

G(x,y)≤ xy ≤ xy[1+a(1− x)(1− y)] = GFGM(x,y),

giving an immediate concordance ordering between the VPFGM and FGM copulas.
By using the following well-known power (Bernoulli) inequality: (1+u)r ≥ 1+ ru for u ≥−1

and r ∈ R/(0,1), then we have

G(x,y) = (xy)1+a(1−x)(1−y) ≥ 1+[1+a(1− x)(1− y)](xy−1)

= GFGM(x,y)−a(1− x)(1− y).

We can also remark that

∂x

(
G(x,y)

x

)
= a

1
x

y(1− y)(xy)a(1−x)(1−y)[1− x− x log(xy)]≥ 0,

implying that the VPFGM copula is left tail increasing (with respect to x and y since it is
diagonally symmetric). For more details on the notion of tail monotonicity, we may refer to
Nelsen (2006) and Izadkhah et al. (2015).

As commented in Izadkhah et al. (2015), the FGM copula benefits from interesting likelihood
ratio dependence properties. Such properties are not excluded for the VPFGM copula, but its
complex copula density is an obstacle to a deep study on this aspect.

Regarding the information provided in Nelsen (2006), the expression for the beta medial
correlation coefficient of the VPFGM copula is as follows:

β = 4G(0.5,0.5)−1 = 4×2−2−2a(1/22)−1 = 2−a/2 −1.

It is clear that β ≤ 0, implying the negative dependence feature of the VPFGM copula.
Also, based on the theory in Nelsen (2006), the basic definition of the rho of Spearman

related to the VPFGM copula is

ρS = 12
∫ 1

0

∫ 1

0
[G(x,y)− xy]dxdy

= 12
∫ 1

0

∫ 1

0
xy
[
(xy)a(1−x)(1−y)−1

]
dxdy.
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Since no direct primitive of the integrand exists and no integral technique gives a satisfying
result, a numerical evaluation of ρS is necessary. Table 1 gives the values of ρS for some values
of a ∈ [0,1].

Table 1: Some values of the rho of Spearman of the VPFGM copula for a = 0,0.1,0.2, . . . ,1.

a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρS 0 −0.0534 −0.1028 −0.1487 −0.1917 −0.232 −0.27 −0.3059 −0.3399 −0.3722 −0.4029

From this table, we can observe that the VPFGM copula exhibits varying degrees of negative
dependence, as indicated by the values of ρS into the interval of [−0.4029,0]. Notably, this range
demonstrates a larger negative dependence compared to the FGM copula, which attains values
within the range of [−0.3333,0]. The FGM copula permits positive dependence, whereas the
VPFGM copula, for a ∈ [0,1], lacks this property. The main distinction between the VPFGM
and FGM copulas lies in their inherent characteristics and the manner in which they shape the
behavior of the associated copula densities.

To complete the above study, one can also investigate the tau of Kendall of the VPFGM
copula defined as

τK = 1−4
∫ 1

0

∫ 1

0
ψ(x,y)ψ(y,x)dxdy,

where ψ(x,y) is given in (4). A numerical exploration gives the results in Table 2.

Table 2: Some values of the tau of Kendall of the VPFGM copula for a = 0,0.1,0.2, . . . ,1.

a 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

τK 0 −0.0357 −0.0691 −0.1005 −0.1302 −0.1585 −0.1854 −0.2112 −0.2359 −0.2596 −0.2825

The same conclusion drawn for the rho of Spearman holds: if we focus on the negative
values, the tau of Kendall of the VPFGM copula attains the range of values [−0.2825,0] against
[−0.2222,0] for the FGM copula, with still the originality arguments in terms of density copula
shapes.

4 Some computational and distributional aspects
This section completes the previous study by investigating the data generation, bivariate distri-
butions, and minimum and maximum random variables, all connected with the VPFGM copula
through the subject dependence structure.
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4.1 Data generation

By considering the VPFGM copula as a bivariate cumulative distribution function, we may
produce random pairs of values (data) from a random vector, say (X ,Y ). Thus, by introducing
the probability operator P, we suppose that

P(X ≤ x,Y ≤ y) = G(x,y), (x,y) ∈ [0,1]2.

Based on the data generation result in Nelsen (2006), the process to generate a single pair
of values of (X ,Y ), say (x⋆,y⋆), is described below. First, we generate a pair of independent
values (x⋆,z), each from random values of the uniform distribution on the interval [0,1]. Second,
we determine y⋆ as the solution of the following nonlinear equation: Gcond(x⋆,y⋆) = z, where
Gcond(x,y) = ψ(y,x) as defined in (4) (with the exchange of x and y). Then the desired pair of
values is (x⋆,y⋆).

We can repeat this process m times to generate m such pairs of values. As an illustrative
application, we generate several pairs of values for different values of m and a in Figures 4 and
5.
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Figure 4: Examples of generated pairs of values (data) from the VPFGM copula for a = 0.3 and
(a) m = 50 and (b) m = 500.

Various point structures, including clusters and “empty areas”, are visible in these figures,
and they are all caused by the multiple dependence features of the VPFGM copula.

On the other hand, from a statistical point of view, these generated pairs of values can be
used to test the effectiveness of parametric estimation methods for a. This can therefore be
considered as a first step towards the statistical use of the VPFGM copula.

4.2 Bivariate distributions

The primary aim of the VPFGM copula is to create bivariate distributions. The fundamental
approach is summarized below. Suppose we have two cumulative distribution functions, denoted
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Figure 5: Examples of generated pairs of values (data) from the VPFGM copula for a = 0.9 and
(a) m = 50 and (b) m = 500.

as U(x) and V (y), representing univariate continuous distributions. We establish a novel bivariate
cumulative distribution function through the following expression:

W (x,y) = G[U(x),V (y)] = [U(x)V (y)]1+a[1−U(x)][1−V (y)], (x,y) ∈ R2,

and the corresponding probability density function is given as

w(x,y) = u(x)v(y)g[U(x),V (y)], (x,y) ∈ R2,

where u(x) and v(y) are the probability density functions associated with U(x) and V (y), respec-
tively, and g(x,y) is the VPFGM copula density presented in (3). A novel bivariate distribution
emerges from these functions. When it comes to selecting appropriate functions for U(x) and
V (y) within the context of lifetime analysis, the comprehensive review by Taketomi et al. (2022)
can be consulted. For valuable choices of U(x) and V (y) defined on R, we may think to the
logistic distribution (see Ali et al. 1978), or the normal distribution.

Just to give an example of a bivariate distribution defined on R2, let us consider U(x) and
V (y) as both the cumulative distribution functions of the standard normal distribution, and
call the related VPFGM bivariate distribution the VPFGM normal (VPFGMN) distribution.
Figure 6 presents the intensity zones of the corresponding probability density function w(x,y)
for selected values of a ∈ [0,1].
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(a) (b)

(c) (d)

Figure 6: Plots of the intensity zones of the VPFGMN probability density function for (a)
a = 0.05, (b) a = 0.3, (c) a = 0.7, and (d) a = 1.

We immediately see how the circle zone of the independence bivariate standard normal
distribution is deformed as the values of the parameter a increase and tends to be more dispersed
at the top-right corner. This figure is the first representation of a bivariate distribution generated
by the VPFGM copula.

4.3 Minimum and maximum random variables
Studying the minimum and maximum of two dependent random variables within the support
[0,1] is crucial to understanding extreme values in proportional type data. This analysis provides
insight into the potential range of outcomes and helps identify critical scenarios. By exploring
the interdependence of these variables, we can better understand the variability inherent in
proportions, providing valuable information for decision-making and risk assessment in diverse
fields such as finance, biology, social sciences or sport sciences. For the general context of
the bivariate distributions within the support [0,1]2, we may refer to Arnold and Ng (2011),
Nadarajah et al. (2017), and Martínez-Flórez et al. (2022).
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In the result below, we examine the probability functions associated with the minimum and
maximum of two dependent random variables whose joint distribution is characterized by the
VPFGM copula, which mainly governs the dependence between these random variables (the
marginal distributions being in fact the uniform distribution on the interval [0,1]).
Proposition 2. Let us consider a random vector (X ,Y ) that has the VPFGM copula as the
cumulative distribution function. Then we define the minimum and maximum of X and Y by
Mmin = min(X ,Y ) and Mmax = max(X ,Y ), respectively. Then the results below hold.

• The cumulative distribution function of Mmax is given by

Fmax(t) = t2+2a(1−t)2
, t ∈ [0,1],

(with the standard complementary values for t ̸∈ [0,1]).
Furthermore, the corresponding probability density function is indicated as

fmax(t) = 2t1+2a(1−t)2
[a(1− t)2 −2at(1− t) log(t)+1], t ∈ (0,1],

(with the standard complementary value for t ̸∈ (0,1]).

• The cumulative distribution function of Mmin is given by

Fmin(t) = 2t − t2+2a(1−t)2
, t ∈ [0,1].

Furthermore, the corresponding probability density function is indicated as

fmin(t) = 2
{

1− t1+2a(1−t)2
[a(1− t)2 −2at(1− t) log(t)+1]

}
, t ∈ (0,1].

Proof. Let us prove each item with the use of the probability operator P.
• For any t ∈ [0,1], we have

Fmax(t) = P(Mmax ≤ t) = P(X ≤ t,Y ≤ t) = G(t, t) = t2+2a(1−t)2
.

The corresponding probability density function is obtained upon differentiation with re-
spect to t; we have

fmax(t) = F ′
max(t) = 2t1+2a(1−t)2

[a(1− t)2 −2at(1− t) log(t)+1].

• Concerning Mmin, for any t ∈ [0,1], since P(X > t) = P(Y > t) = 1− t, by using the previous
result, we have

Fmin(t) = P(Mmin ≤ t) = 1−P(Mmin > t) = 1−P(X > t,Y > t)

= 1−P(X > t)−P(Y > t)+P(Mmax > t)

= 1−P(X > t)−P(Y > t)+1−Fmax(t)

= 2t −Fmax(t) = 2t − t2+2a(1−t)2
.

The corresponding probability density function is obtained upon differentiation with re-
spect to t; we have

fmin(t) = F ′
min(t) = 2

{
1− t1+2a(1−t)2

[a(1− t)2 −2at(1− t) log(t)+1]
}
.
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The desired functions are obtained.

Beyond the minimum and maximum paradigms, an interest in the two exhibited distributions
in Proposition 2 is that they are new in the literature and can be considered one-parameter
statistical models in the field of proportional or rate data analysis. Thus, in some senses, the
nature of the VPFGM copula is detoured for such univariate perspectives. Further details and
applications of the univariate distributions with support [0,1] can be found in Mazucheli et al.
(2019), Korkmaz (2020), and Korkmaz and Chesneau (2021).

5 Conclusion

In this article, we introduced and comprehensively analyzed a novel copula that amalgamates
the structural elements of variable-power and FGM-type copulas, giving rise to an innova-
tive dependence model. Our examination demonstrated that it has a diagonal symmetry and
manifests negative correlation characteristics, including negatively quadrant dependence and
negative-valued beta medial correlation, among others.

Moreover, through a numerical investigation, it was determined that the rho of Spearman
is confined to the interval [−0.4029,0], while the tau of Kendall is found within the range of
[−0.2825,0]. In addition, an adapted data generation process is described, a new bivariate
normal distribution is derived, and a distributional analysis is conducted on the minimum and
maximum of two random variables that are related by the suggested copula. These findings
represent a slight enhancement over the corresponding negative range associated with the FGM
copula. Consequently, our work makes a contribution to the advancement of variable-power-type
copulas, establishing a theoretical foundation for applied research using them.

Some potential avenues of work are described below.

• The study of the following more general and possibly diagonally asymmetric version of the
proposed copula:

G†(x,y) = (xy)1+aθ(x)ξ (y), (x,y) ∈ [0,1]2,

where θ(x) and ξ (y) are functions that satisfy θ(1) = 0 and ξ (1) = 0, and other conditions
that need to be determined to make it valid in the mathematical sense. Like this, we
transpose the idea in Rodríguez-Lallena and Úbeda-Flores (2004) for the FGM copula to
the VPFGM copula.

• The development of a multivariate extension of the proposed copula in the following form:

G(x1,x2, . . . ,xn) =

(
n

∏
i=1

xi

)1+a∏n
i=1(1−xi)

, (x1,x2, . . . ,xn) ∈ [0,1]n,

where n denotes a positive integer. In this setting, the possible range of values on a making
G(x1,x2, . . . ,xn) a valid copula is a challenge that we postpone for the future.
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