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Abstract. In R and S-charts in quality control applied to a normal population one mostly
uses a linear transformation of the range or the sample deviation as unbiased estimators of the
unknown process standard deviation. In this paper, we propose related statistics as alternative
estimators of the unknown standard deviation and variance having a smaller mean squared
error. At the same time, we give a theoretical explanation for the rules of thumb recommended
in quality control which unbiased estimators to use. Since obtaining samples from different
independent subgroups is costly, we propose a mathematical model for selecting these samples
to satisfy the budget constraint. The used estimator for the variance or standard deviation has
a minimal mean squared error within a certain class of estimators. It is shown that selecting the
whole sample from one particular chosen subgroup is a good strategy for linear sampling costs.
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1 Introduction.
In R and S-charts (see Section 4.7 and the Appendix of Chapter 4 of Ryan (2011) or Montgomery
(2009)) applied to a normal population, one uses a linear transformation of the range or the
sample standard deviation as unbiased estimators of the unknown process standard deviation.
Within quality control, there is a tradition to use only unbiased estimators. However, if one
uses as a quality measure of an estimator its mean squared error, there is no need to restrict
to unbiased estimators. In this paper we will consider a class of estimators containing both
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biased and unbiased estimators from which it is easy to derive a (biased) estimator having a
minimal mean squared error among this class. A similar set-up was also followed in Woodall
and Montgomery (2000), Mahmoud et al. (2010) and Vardeman (1999). Our analysis extends
their approach. Since the theoretical properties of the R and S estimators in R and S-charts are
already known for a long time most of the proofs of these results can be found in papers written
more than thirty years ago. Also these results coincide with classical results in statistics and
as a consequence of this no papers appeared on this topic recently. After the introduction of
these estimators in quality control the focus shifted on how to apply these estimators to different
industrial applications. For a recent overview on the practical use of these so-called univariate
charts to all kind of different settings like healthcare and environmental control the reader is
referred to Suman and Prajapati (2018), Zwetsloot et al. (2023) and Arciszewski (2023).

As in statistics it is mostly assumed in quality control models that gathering data does
not involve any costs. However, in practice data gathering might be costly and subject to
budget restrictions. Due to these restrictions we need to decide beforehand from which available
resources we will generate our data. These available resources should be selected in such a
way that our constructed estimator will satisfy the quality measure imposed on an estimator.
In this paper this can be either an estimator within the class of unbiased estimators having a
minimal mean squared error or a biased estimator within a given class of estimators satisfying
this property. In this paper we will propose a simple static optimization problem dealing with
the selection of the available resources from which the data are generated.

The outline of this paper is now as follows. In the first subsection of Section 2, we present
a compact overview of the classical unbiased estimators of the standard deviation used in S
and R-charts for single groups. Computing the mean squared error of these estimators we also
confirm theoretically some empirical rules of thumb applied in the literature which estimator to
use. In the past these rules of thumb were advised without any theoretical explanation.

In the second subsection of Section 2 we propose related biased estimators having a smaller
mean squared error than the classical used estimators for both the standard deviation and
the variance. At the same time we extend these results for a normal population consisting of
either single or multiple independent subgroups to a population having a location-scale family
of distributions.

In section 3 of this paper we formulate in the presence of a budget constraint on collecting
data a simple static model constructing an estimator for both the variance and standard de-
viation having the smallest mean squared error. In this set-up we are allowed to sample from
different independent subgroups each having different sampling costs. Due to the separable
structure of the mean squared error objective function this optimization problem can be solved
by a dynamic programming procedure. As a special case this model confirms the intuitively
clear result that for linear sampling costs it is a good strategy to generate the whole sample
from a single subgroup.

Finally in Section 4 we list our findings in this paper and give in the Appendix the proofs of
our main results. Observe that the first subsection of Section 2 can be regarded as an elementary
and unifying note on the property of the classical estimators used in R and S-charts discussed
in standard textbooks on quality control.
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2 On classical and alternative estimators of the standard devi-
ation and variance used in quality control.

In the first subsection we will discuss the main properties of the classical unbiased estimators for
the standard deviation used in R and S-charts. The result in Lemma 1 about the normalisation
constant used in a S-chart seems to be new. In the second subsection we propose for single
and multiple subgroups some alternative biased estimators for both the standard deviation
and variance having a smaller mean squared error than the classical unbiased estimators. We
will also analyze in this subsection the differences between these estimators and compute the
ratios of their mean squared error. In the same subsection encountering multiple independent
subgroups of data having different sample sizes the relation of these estimators to so-called
pooled estimators (see page 360 of Irwin and Miller (2004) or Arnold (1990)) is also discussed.

2.1 On the main properties of the classical unbiased estimators in R and
S-charts.

In this section we first give for completeness an overview of the estimators used in quality
control to estimate the unknown standard deviation for normal populations. Similar results
can be found in Mahmoud et al. (2010) and Woodall and Montgomery (2000). Introducing
in a normal sample X⊤ = (X1, ...,Xn), the largest order statistic Xn:n := max{X1, ...,Xn} and the
smallest order statistic X1:n := min{X1, ...,Xn}, one uses in R-charts within quality control as an
unbiased estimator of the unknown standard deviation σ > 0 in a sample of size n the statistic

TR(X) := θnRn(X), (1)

with Rn the so-called sample range given by

Rn(X) := Xn:n −X1:n,

(see page 229 of Montgomery (2009)). Of course, it is assumed this sample is taken from a
system in control. To compute the constant θn in this unbiased estimator, we observe that

Rn(X)
d
= σRn,s(Y),Rn,s(Y) := Yn:n −Y1:n, (2)

with Z1
d
= Z2 meaning the random variables Z1 and Z2 have the same distribution and Rn,s(Y) :=

Yn:n−Y1:n the range of the sample Y⊤ = (Y1, ...,Yn) from a standard normal population. As shown
in the remainder of this paper it is easy to generalize the above observations for a normal
population to location-scale families of distributions. By the symmetry of a standard normal
distribution around zero, we obtain by relations (1) and (2) that

σ = E(TR(X)) = E(θnσRn,s(Y)) = θnσE(Rn,s(Y)) = 2σθnE(Yn:n),

with Yn:n the largest order statistic of a sample of size n coming from a standard normal distri-
bution. This shows

θn = (E(Rn,s(Y)))−1 = (2E(Yn:n))
−1. (3)
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Introducing the mean squared error of an estimator T of some unknown constant b defined by

MSE(T ) := E((T (X)−b)2),

and the bias of an estimator given by

bias(T ) := E(T (X))−b,

yields by relation (2) and (3) that the mean squared error of the unbiased estimator TR(X) =
θnRn(X) is given by

MSE(TR) = Var(θnσRn,s(Y)) =
σ2Var(Rn,s(Y))

(E(Rn,s(Y)))2 =
σ2Var(Rn,s(Y))

4(E(Yn:n))2 . (4)

Since in general, it seems impossible to derive an elementary expression for the above ratio
divided by σ2 (Arnold et al. (2008)), tables are used within quality control (Montgomery (2009),
Harter (1960)). In our computational experiments, we generate sample paths of the stochastic
range process R = {Rn,s : n ∈ N} and use Monte Carlo simulation to compute both Var(Rn,s(Y))
and E(Rn,s(Y)) for n ≤ 50. The density of the random variable Rn,s(Y) is given by David (1970)

fRn,s(Y)(t) = n(n−1)
∫ ∞

−∞
φ(u)(Φ(u+ t)−Φ(u))n−2φ(u+ t)du, t ≥ 0,

with φ the standard normal density and Φ the standard normal cdf. Using relation (2) this
implies that the density of the unbiased estimator TR(X) = θnRn(X) is given by

fTR(X)(t) =
1

σθn
fRn,s(Y)

(
t

σθn

)
, t ≥ 0,

and so it is possible to give a plot of the density of the cdf of this estimator. On page 112 of
Montgomery (2009), as a rule of thumb, the unbiased estimator TR is recommended for samples
from a normal population of size n with n ≤ 6 instead of the unbiased estimator TS used in a
S-chart. In an S-chart, the unbiased estimator TS(X) := γnSn(X),n ≥ 2 is applied with S2

n denoting
the well-known unbiased sample variance estimator of σ2 given by

S2
n(X) :=

1
n−1 ∑n

i=1(Xi −Xn)
2,Xn :=

1
n ∑n

i=1 Xi,

with Xn representing the sample mean. The constant γn is selected in such a way that the
estimator γnSn is an unbiased estimator of the unknown standard deviation σ . By the properties
of a normal distribution it is well known (Casella and Berger (2002)) that

Sn(X)
d
= σSn,c(Y) and (n−1)S2

n,c(Y)
d
= Z, (5)

with Sn,c the sample standard deviation of a sample Y⊤ = (Y1, ...,Yn) from a standard normal
population and Z a random variable having a chi-square distribution with n − 1 degrees of
freedom. This yields

σ = E(γnSn(X)) = E(γnσSn,c(Y)) =
γnσ

2
√

n−1
E( 2

√
Z) = γnσ 2

√
2

n−1
Γ( n

2)

Γ(n−1
2 )

,
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with Γ(α) =
∫ ∞

0 xα−1e−xdx the well known gamma function. Hence we obtain for every n ≥ 2 that

γn = (E(Sn,c(Y)))−1 =
2

√
n−1

2
Γ
( n−1

2

)
Γ
( n

2

) . (6)

Using S2
n,c is an unbiased estimator of the known variance of a standard normal population and

so E(S2
n,c(Y)) = 1, it follows by relation (5) and (6) that the mean squared error of the estimator

γnSn,n ≥ 2 is given by

MSE(γnSn) = Var(γnσSn,c(Y)) = σ2 Var(Sn,c(Y))

(E(Sn,c(Y)))2 = σ2(γ2
n −1). (7)

Since MSE (γnSn) ≥ 0, we obtain for every n ≥ 2 that γn ≥ 1. In the next result, we list some
global properties of the sequence γn,n ≥ 2. Before discussing these properties, we introduce the
following definition.

Definition 1. The non-negative sequence δn, n ≥ 2 is called log-convex if the first order differ-
ences ∆δn := δn+1 −δn, n ≥ 2 are increasing.

For the sequence γn := (E(Sn,c(Y))−1, n ≥ 2 one can show the following result. Its proof is
given in the Appendix.

Lemma 1. The sequence γn,n ≥ 2 is decreasing and log-convex and it satisfies γ2 = 2
√π

2 and for
every n ≥ 2 the first order non-linear recurrence relation

γn+1 = γ−1
n

2

√
n

n−1
. (8)

Moreover limn↑∞ n(γn −1) = 4−1 and for every n ≥ 3

1 ≤
(

n
n−1

) 1
4

≤ γn ≤
(

n−1
n−2

) 1
4

. (9)

By relation (8), it is easy and numerically stable to compute the constants γn, n ≥ 2. Hence
it is not necessary to use tables for the sequence γn, n ∈ N, n ≥ 2. Since

(n−1)S2
n(X)

σ2
d
= Z,

with Z a random variable having a chi-square distribution with n−1 degrees of freedom (Casella
and Berger (2002)) having density fZ(z) = e−

z
2 z

n−1
2 −1

2
n−1

2 Γ( n−1
2 )

this yields

TS(X) = γnSn(X)
d
=

γnσ 2
√

Z
2
√

n−1.
. (10)

Since the density of the non-negative random variable 2
√

Z with Z having a chi-square distribution
having n−1 degrees of freedom is given by

f 2√Z(z) =
z

n−1
2 e−

z2
2

2
n−3

2 ,Γ(n−1
2 )

, z > 0.
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This yields by relation (10) that the density fTS(t), t > 0 of the estimator TS(X) = γnSn(X) equals

fTS(X)(t) =
2
√

n−1
γnσ

f 2√Z

( 2
√

n−1t
γnσ

)
=

σ 2
√

2Γ(n
2)

Γ(n−1
2 )

f 2√Z

(
σ 2
√

2Γ(n
2)t

Γ(n−1
2 )

)
,

and so it is possible to give a plot of the density of this estimator. In Figure 1, we give a plot
of the functions n → MSE(γnSn,c) = γ2

n − 1 and n → MSE(θnRn,c) for 2 ≤ n ≤ 50. As this figure
shows, comparing the mean squared error of both the R and S estimators defined in relations (4)
and (7), it is always better to use the estimator TS = γnSn instead of the estimator TR = θnRn for
n ≥ 7 while there is a slight preference for the S-estimator when n ≤ 6. This confirms the rule
of thumb given in Montgomery (2009) or Vardeman (1999) and the recommendation of always
using the S-estimator in Mahmoud et al. (2010). An additional advantage of the S-estimator is
that the constant γn can be numerically computed in a stable way applying relation (8) without
making use of tables, while θn needs to be computed by using tables or (if not available) by
simulation or numerical integration. This means computing θn can be less accurate.

𝜸 𝑺

𝜽 R

Figure 1: Plot of the mean squared errors of R and S estimators (left panel) for σ = 1 and their
ratio (right panel).

In the next subsection we introduce related unbiased estimators having a smaller mean
squared error.

2.2 On some alternative biased estimators for the standard deviation and the
variance

It is well known within statistics that biased estimators of a unknown parameter having a
smaller mean squared error (Woodall and Montgomery (2000)) can under certain conditions be
constructed using a linear transformation of the unbiased estimator of the same parameter. The
construction of these alternative estimators for both the range estimator and sample standard
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deviation estimator used in R and S-charts is discussed in the following result. Its proof is given
in the Appendix.

Lemma 2. Let k > 0 and X⊤ = (X1, ....,Xn),n ≥ 2 be a random vector of size n satisfying

Xi
d
= a+bYi,1 ≤ i ≤ n,

with unknown location parameter a ∈ R and scale parameter b > 0 and the random vector Y⊤ =
(Y1, ...,Yn) consisting of independent and identically distributed random variables has a known
cdf F having a finite variance. If the statistic T : Rn → R is an estimator of the unknown scale
parameter b > 0 and

T (X)
d
= b f (Y).

for some function f : Rn →R satisfying E( f k(Y))> 0 and E( f 2k(Y)) finite, then among the class
of statistics αT k,α ∈ R, used as an estimator of the unknown parameter bk the estimator α⋆T k

with
α⋆ =

E( f k(Y))

E( f 2k(Y))
,

is an estimator of bk with the smallest mean squared error. Its bias is given by

bias(α⋆T k) =
−bkVar( f k(Y))

E( f 2k(Y))
,

and its mean squared error by

MSE
(

α⋆T k
)
=−bias(α⋆T k)bk.

Since Var( f k(Y))≥ 0, we obtain by Lemma 2 that on average for every k∈N we underestimate
the unknown parameter bk using the estimator α⋆T k for bk. The result in Lemma 2 can also
be applied to a non-normal population. Since we know the cdf of the random variable Y1 it is
possible by simulation to determine the value of α⋆. Observe in a normal population it follows
for the standard sample deviation estimator that the constant α⋆ is given by an elementary
expression. As shown in Corollary 3 this constant is given by γ−1

n with γn listed in relation (6).
As an example of a non-normal population we mention a nonnegative sample X⊤ = (X1, ...,Xn)
satisfying

Xi
d
= aY b

i ,a > 0, b > 0, (11)

with Yi, i = 1, ...,n, nonnegative independent and identically distributed random variables having
a known cdf F and the random variables ln(Yi) having a finite variance. Well known examples
covering this case are Y1 exponentially distributed with parameter 1. In this case the random
variable Xi has a Weibull distribution. Another example is given by Yi has a gamma distribution
with scale parameter 1 and known shape parameter α > 0. In this case the random variable Xi

has a so-called generalised gamma distribution (Abbaszadehpeivasti and Frenk (2023)). Since
by relation (11) it follows

ln(Xi)
d
= ln(a)+b ln(Yi), (12)
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we can easily apply Lemma 2 replacing in the used statistic the random variable Xi by the
random variable ln(Xi). In case the nonnegative independent random variables Xi, i = 1,2, ..,n
are log-normal distributed, it follows by definition that the random variables ln(Yi) are standard
normal distributed. Another example is given by

Xi
d
= (a+bYi)

β ,a > 0, b > 0,

with β > 0 known and Yi, i = 1, ...,n a sequence of non-negative and identically distributed
random variables having a known cdf F and finite variance. In this case it follows that

Xβ−1

i
d
= a+bYi,

and we replace in the used statistic the random variable Xi by the random variable Xβ−1

i . The
above transformations resemble the Box-Cox transformations used in statistical Process Control
transforming non-normal charts into charts which are approximately normal distributed (see
section 3 of Figueiredo and Gomes (2006)). If we compare the mean squared error of the unbiased
estimator α0T k, α0 := E( f k(Y))−1 of the parameter bk with the minimum mean squared error
estimator within the class of estimators αT k, α ∈ R the next corollary follows immediately.
Corollary 1. If the conditions of Lemma 2 hold and the unbiased estimator α0T k of bk with
α0 = E( f k(Y))−1 is considered, then

MSE(α⋆T k)

MSE(α0T k)
=

E( f k(Y))2

E( f 2k(Y))
≤ 1.

Proof. It follows by relation (32) that

MSE(α0T k) = b2k pk(α0) =
b2kVar( f k(Y))

E( f k(Y))2 .

Applying Lemma 2 implies the desired result.

We now apply Lemma 2 (for k = 1) to the classical unbiased estimators used in a R and
S-chart for a normal population. The next result is an easy application of Lemma 2.
Corollary 2. If X⊤ = (X1, ....,Xn), n ≥ 2 is a random sample of size n from a normal population
then the estimator TR(α⋆) := α⋆Rn of the standard deviation σ > 0 with

α⋆ =
E(Rn,s(Y))

E(R2
n,s(Y))

,

and Y⊤ = (Y1, ...,Yn) a random sample from a standard normal population satisfies

E(α⋆Rn(X)) =
σE(Rn,s(Y))2

E(R2
n,s(Y))

.

Among the class of estimators TR(α) := αRn,α > 0 of the standard deviation σ > 0 in a R-chart
applied to a normal population the biased estimator TR(α⋆) has the smallest mean squared error
and this is given by

MSE(α⋆Rn) = σ2 Var(Rn,s(Y))

E(Rn,s(Y)2)
.
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Proof. Since in a normal population we know that

(X1, ...,Xn) = (µ +σY1, ...,µ +σYn),

with Y⊤ = (Y1, ...,Yn) consisting of independent and standard normal distributed random vari-
ables we obtain

Rn(X) = max{µ +σY1, ...,µ +σYn}−min{µ +σY1, ...,µ +σYn}= σRn,s(Y).

Since f (Y) =Yn:n−Y1:n =Rn,s(Y) and E(Rn,s(Y))> 0 for n≥ 2 we may apply Lemma 2 substituting
k = 1. This shows the result.

As already observed, one uses in a S-chart in quality control the unbiased estimator TS = γnSn

with γn listed in relation (6). The next result is again an application of Lemma 2 for k = 1.

Corollary 3. If X⊤ = (X1, ....,Xn), n ≥ 2 is a random sample of size n from a normal population
then the estimator TS(α⋆⋆) = α⋆⋆Sn of the standard deviation σ > 0 with

α⋆⋆ = γ−1
n = 2

√
2

n−1
Γ(n

2)

Γ(n−1
2 )

,

satisfies

E(α⋆⋆Sn(X)) =
2

n−1
Γ2(n

2)σ
Γ2(n−1

2 )
= γ−2

n σ .

Among the class of estimators TS(α) = αSn, α > 0 of the standard deviation σ > 0 in a normal
population the biased estimator TS(α⋆⋆) has the smallest mean squared error and this is given by

MSE(α⋆⋆Sn) = σ2

(
1−

2Γ2(n
2)

(n−1)Γ2(n−1
2 )

)
= σ2(1− γ−2

n ). (13)

Proof. Again using (X1, ...,Xn) = (µ +σY1, ...,µ +σYn) with Y⊤ = (Y1, ...,Yn) consisting of inde-
pendent and standard normal distributed random variables we obtain Sn(X) = σSn,c(Y) and
so

f (Y) := Sn,c(Y) =
2

√
∑n

i=1(Yi −Y n)2

n−1
.

Since E( f (Y)) > 0 for every n ≥ 2, the conditions of Lemma 2 are satisfied for k = 1 and this
shows the result observing E

(
f 2(Y)

)
= 1 and

E( f (Y)) =
1

2
√

n−1
E
(

2
√

Z
)
= 2

√
2

n−1
Γ(n

2)

Γ(n−1
2 )

.

with the random variable Z having a chi-square distribution with n−1 degrees of freedom.
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Observe the above results also hold for any sequence of independent and identically dis-
tributed random variables Xi, i = 1, ...,n, for which the normalized random variable Yi = b−1(Xi−
a) has a known cdf. If this holds we cannot compute the optimal α but need to approximate
this value by simulation. By relations (7) and (13) we obtain for a normal population

γ2
n MSE(α⋆⋆Sn) = MSE(γnSn).

Since by relation (9) we know ( n
n−1)

1
2 ≤ γ2

n ≤ (n−1
n−2)

1
2 ,n ≥ 3, this implies that both the optimal

biased and unbiased estimators of the standard variance in a normal population have almost
the same mean squared error for already relatively small values of the sample size. Observe the
mean squared error also depends linearly on the unknown variance. Hence, if it is suspected
that the variance is large and the mean squared error is regarded as a more important quality
measure of an estimator than whether an estimator is biased or unbiased, one should apply the
biased estimator α⋆⋆Sn. In Figure 2, we now list the mean squared error of the most important
three different estimators excluding the classical range estimator for σ = 1. As expected, the
estimator α⋆⋆Sn has the smallest mean squared error.

Figure 2: Plot of the mean squared errors of the three estimators of the standard deviation.

In case we like to give an estimation of the variance we identify in the next lemma the best
possible estimator with respect to the mean squared error within the class of linear transforma-
tions of the sample variance. The next lemma is actually a special case of Lemma 2 for k = 2.
The proof is listed in the Appendix.

Lemma 3. If X⊤ = (X1, ...,Xn),n ≥ 2, is a random sample of size n from a population satisfying

Xi
d
= µ +σYi, (14)

having unknown expectation µ and standard deviation σ and the random vector Y⊤ = (Y1, ...,Yn)
consists of independent and identically distributed random variables having a known cdf F and
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a finite 4th moment, then the estimator T 2
S (α⋆⋆⋆) = α⋆⋆⋆S2

n of the variance σ2 > 0 with

α⋆⋆⋆ =
n

E(Y 4
1 )−

n−3
n−1 +n

,

satisfies

E(α⋆⋆⋆S2
n) =

nσ2

E(Y 4
1 )−

n−3
n−1 +n

.

Among the class of estimators T 2
S (α) = αS2

n, α > 0 of the variance σ2 the biased estimator
T 2

S (α⋆⋆⋆) has the smallest mean squared error and this is given by

MSE(α⋆⋆⋆S2
n) = b4(1−α⋆⋆⋆) =

b4((n−1)E(Y 4
1 )−n+3)

(n−1)E(Y 4
1 )−n+3+n2 .

Suppose we consider M independent samples Xm = (X1,m, ...,Xnm,m) of different or equal sizes
nm ≥ 2, m = 1, ...,M from location-scale families having possibly different unknown location pa-
rameters but the same unknown scale parameter. This set-up often occurs in quality control.
Typically, an initial series of independent samples or independent subgroups is used to estimate
the mean and standard deviation of a process. During this initial phase, the process should be
in control. These estimations are then used to produce control limits in R and S-charts. Since
the means might be different in each of the samples we consider for the estimation of the scale
parameter the following class of statistics

T (X1, ...,XM) = ∑M
m=1 αmT k

m(Xm),αm ∈ R, (15)

with Tm : Rnm → R the statistic used to estimate the scale parameter in sample subgroup m =
1, ...,M. This means we use a weighted combination of estimators for the estimation of the
unknown scale parameter. One can now show the following generalization of Lemma 2. This
result is also mentioned in Woodall and Montgomery (2000) without proof for the special case k =
1 and the normal population applying the sample standard deviation statistic to each subgroup.
For completeness its elementary proof is listed in the Appendix.

Lemma 4. Let k > 0 and for m = 1, ...,M the random vectors

Xm = (X1,m, ...,Xnm,m),

nm ≥ 2 are independent random samples of size nm,m = 1, ...,M, satisfying

Xi,m
d
= am +bYi,m, (16)

for every 1 ≤ i ≤ nm with the random vector Ym = (Y1,m, ...,Ynm,m) consisting of independent and
identically distributed random variables having a known cdf Fm,m = 1, ...,M. If for m = 1, ...,M
the statistic Tm : Rnm → R is an estimator of the unknown scale parameter b and

Tm(Xm)
d
= b fm(Ym), (17)
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for some function fm : Rnm → R satisfying E( f k
m(Ym)) > 0 and E( f 2k

m (Ym)) is finite then among
the class of statistics ∑M

m=1 αmT k
m,αm ∈ R used as an estimator of the parameter bk the estimator

∑M
m=1 α⋆

mT k
m with

α⋆
m =

(
1+∑M

m=1

(
E( f k

m(Ym))
)2

Var ( f k
m(Ym))

)−1
E( f k

m(Ym))

Var( f k
m(Ym))

,

is an estimator of bk having the smallest mean squared error among this class. Its bias equals

bias
(
∑M

m=1 α⋆
mT k

m

)
=−bk

(
1+∑M

m=1

(
E( f k

m(Ym))
)2

Var( f k
m(Ym))

)−1

,

and its mean squared error

MSE
(
∑M

m=1 α⋆
mT k

m

)
=−bias

(
∑M

m=1 α⋆
mT k

m

)
bk.

If we restrict ourselves to the class of unbiased estimators within the class of estimators
T = ∑K

k=1 αmT k
m,αk ∈ R and select that unbiased estimator with the smallest mean squared error

one can easily show the following result. Its proof is listed in the Appendix.

Lemma 5. Under the same conditions as in Lemma 4 the unbiased estimator of bk with the
smallest mean squared error among the class of estimators T = ∑M

m=1 αmT k
m,αm ∈ R is given by

∑M
m=1 α⋆⋆

m T k
m with

α⋆⋆
m =

(
∑M

m=1
E( f k

m(Ym))
2

Var( f k
m(Ym))

)−1 E( f k
m(Ym))

Var( f k
m(Ym))

.

Its mean squared error is given by

MSE
(
∑M

m=1 α⋆⋆
m T k

m

)
= b2k

(
∑M

m=1

(
E
(

f k
m(Ym)

))2

Var( f k
m (Ym))

)−1

.

The next result is a generalization of Corollary 1 for independent samples.

Lemma 6. If the conditions of Lemma 4 hold and ∑M
m=1 α⋆⋆

m T k
m is the unbiased minimum mean

squared error estimator of bk and ∑M
m=1 α⋆

mT k
m the biased minimum mean squared error estimator

of bk then
MSE

(
∑M

m=1 α⋆
mT k

m
)

MSE
(
∑M

m=1 α⋆⋆
m T k

m
) = ∑M

m=1
(E( f k

m(Ym)))
2

Var( f k
m(Ym))

1+∑M
m=1

(E( f k
m(Ym)))

2

Var( f k
m(Ym))

.

If the independent random variables Y (m)
i , 1 ≤ m ≤ M, 1 ≤ i ≤ m mentioned in Lemma 4 and

5 have a standard normal distribution then for the estimation of the standard deviation σ > 0
we apply Lemma 4 with k = 1 and fm(Ym) = Snm,c(Ym). By relation (6) it follows that

E( fm(Ym)) =
1

γnm

,Var( fm(Ym) = 1− 1
γ2

nm

. (18)



Sampling costs in quality control 131

By Lemma 4 for k = 1 it follows using relation (18) that the weights α⋆
m, m = 1, ...,M of the

minimum mean squared error estimator of the standard deviation within the class ∑M
m=1 αmSnm ,

αm ∈ R are given by

α⋆
m =

(
1+∑M

m=1
1

γ2
nm
−1

)−1 γnm

γ2
nm
−1

,1 ≤ m ≤ M. (19)

and this estimator has mean squared error

MSE
(
∑M

m=1 α⋆
mSnm

)
= σ2

(
1+∑M

m=1
1

γ2
nm
−1

)−1

. (20)

Applying Lemma 5 and relation (18) it follows that the weights α⋆⋆
m , m = 1, ...,M of the minimum

mean squared error unbiased estimator of the standard deviation within the class ∑M
m=1 αmSnm ,

αm ∈ R equal

α⋆⋆
m =

(
∑M

m=1
1

γ2
nm
−1

)−1 1
γ2

nm
−1

,1 ≤ m ≤ M (21)

and this estimator has mean squared error

MSE
(
∑M

m=1 α⋆⋆
m Snm

)
= σ2

(
∑M

m=1
1

γ2
nm
−1

)−1

. (22)

This shows for a normal population that

MSE
(
∑M

m=1 α⋆
mSnm

)
MSE

(
∑M

m=1 α⋆⋆
m Snm

) = ∑M
m=1

1
γ2

nm−1

1+∑M
m=1

1
γ2

nm−1

. (23)

In order to illustrate the relations we consider the following example.

Example 1. Devor et al. (1992) provides on page 165 a data set made up of measurements of
an engine block’s cylinder bore diameter. The inside of the cylinder bore was measured after the
boring operation and the units of measurement are 1/10,000 of an inch. Approximately every
30 minutes, samples of size n = 5 are collected. The first 35 samples are displayed in Table 1.
The precise dimensions are in the range of 3.5205, 3.5202, 3.5204, and so forth. The final three
numbers in the measurements are provided by the entries in Table 1. Since we assume that the
above non-negative measurements follow the multiplicative model (see relation (11)) satisfying
ln(Xi) is normally distributed we need to compute first as shown in relation (12) the sample
ln(Xi j), i = 1, ...,35, j = 1, ...,5 before evaluating the value of the estimator of b. For this data
set every subgroup m = 1, ...,35 has sample size nm = 5 and so

γnm = γ5 =
2

√
5−1

2
Γ
( 5−1

2

)
Γ
(5

2

) = 1.0638.

Applying relations (20) and (22) we obtain using Excel that the mean squared error of the biased
estimator of the parameter b is given by

MSE
(
∑M

m=1 α⋆
mSnm

)
= 0.0000883×b2,
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Table 1: Cylinder diameter data.
Sample i Xi1 Xi2 Xi3 Xi4 Xi5 Sample i Xi1 Xi2 Xi3 Xi4 Xi5

1 205 202 204 207 205 19 207 206 194 197 201
2 202 196 201 198 202 20 200 204 198 199 199
3 201 202 199 197 196 21 203 200 204 199 200
4 205 203 196 201 197 22 196 203 197 201 194
5 199 196 201 200 195 23 197 199 203 200 196
6 203 198 192 217 196 24 201 197 196 199 207
7 202 202 198 203 202 25 204 196 201 199 197
8 197 196 196 200 204 26 206 206 199 200 203
9 199 200 204 196 202 27 204 203 199 199 197
10 202 196 204 195 197 28 199 201 201 194 200
11 205 204 202 208 205 29 201 196 197 204 200
12 200 201 199 200 201 30 203 206 201 196 201
13 205 196 201 197 198 31 203 197 199 197 201
14 202 199 200 198 200 32 197 194 199 200 199
15 200 200 201 205 201 33 200 201 200 197 200
16 201 187 209 202 200 34 199 199 201 201 201
17 202 202 204 198 203 35 200 204 197 197 199
18 201 198 204 201 201

and the mean squared error of the unbiased estimator of the parameter b by

MSE
(
∑M

m=1 α⋆⋆
m Snm

)
= 0.0000936×b2.

This shows using relation (23) that the mean squared error of the unbiased estimator is approx-
imately 5% bigger than the mean squared error of the biased estimator.

Since it is shown in Lemma 1 that γn satisfies some tight upper and lower bounds we can
approximate α⋆

m in relation (19) and α⋆⋆
m in relation (21), 1≤m≤M by some simpler expressions.

By Lemma 1 it follows that

γ2
n ≃

(
n

n−1

) 1
2

.

This shows using x
1
2 − 1 ≃ 1

2(x− 1) (first order Taylor approximation around x = 1) that by
relation (19)

α⋆
m ≃ 2

(
1+2∑M

m=1(nm −1)
)−1

(nm −1)

and by relation (21)

α⋆⋆
m ≃

(
∑M

m=1(nm −1)
)−1

(nm −1) =
(
∑M

m=1 nm −M
)−1

(nm −1).

This shows that the minimal mean squared error unbiased estimator of the standard deviation
is approximately the pooled standard deviation estimator. At the same time the mean squared
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error of both estimators listed in relation (20) and (22) satisfy

MSE(∑M
m=1 α∗

mSnm)≃ σ2
(

1+2∑M
m=1(nm −1)

)−1
,

and
MSE(∑M

m=1 α∗∗
m Snm)≃ σ2

(
2∑M

m=1(nm −1)
)−1

.

Finally we analyze in this section the estimation of the variance if there exist independent
samples from the location-scale families m, m = 1, ...,M with possibly different means but the
same scale parameter. This means that the independent random vectors

Ym = (Y1,m, ....,Ynm,m),

consist of independent and identically distributed random variables having mean zero and vari-
ance 1. It is assumed that additionally the random variables Y1,m, m= 1, ...,M have a finite fourth
moment. It follows introducing f 2

m(Ym) = S2
nm
(Ym) that by relation (33)

E( f 2
m(Ym)) = 1,Var( f 2

m(Ym)) =
1

nm

(
E
(
Y 4

1,m
)
− nm −3

nm −2

)
. (24)

By Lemma 4 and using relation (24) we obtain that the weights α⋆
m of the minimum mean

squared error estimator of the variance within the class ∑M
m=1 αmS2

nm
, αm ∈ R are given by

α⋆
m =

1+∑M
m=1

nm

E
(

Y 4
1,m

)
− nm−3

nm−1

−1
nm

E
(

Y 4
1,m

)
− nm−3

nm−1

,1 ≤ m ≤ M,

and this estimator has mean squared error

MSE
(
∑M

m=1 α⋆
mS2

nm

)
= σ4

1+∑M
m=1

nm

E
(

Y 4
1,m

)
− nm−3

nm−1

−1

. (25)

By Lemma 5 and again relation (24) the weights α⋆⋆
m of the minimum mean squared error

unbiased estimator of the variance within the same class equal

α⋆⋆
m =

∑M
m=1

nm

E
(

Y 4
1,m

)
− nm−3

nm−1

−1
nm

E
(

Y 4
1,m

)
− nm−3

nm−1

,1 ≤ m ≤ M, (26)

and this estimator has mean squared error

MSE
(
∑M

m=1 α⋆⋆
m S2

nm

)
= σ4

∑M
m=1

nm

E
(

Y 4
1,m

)
− nm−3

nm−1

−1

.

Since for every m = 1, ...,M the cdf of the random variable Y1,m is known we can estimate by
simulation the fourth moment or calculate it. Depending on which estimator we prefer to use,
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we can thus identify for every m the weights α⋆⋆
m or α⋆

m. If the random variable Y1,m for some
m has a standard normal cdf it follows that its fourth moment equals 3. In some particular
cases it is also possible to approximate the optimal weights by a simpler expression. If in each
subgroup the random variable Y1,m, m = 1, ...,M, have the same cdf and the sample size nm in
each subgroup is relatively large implying nm−3

nm−1 ≃ 1 it follows by relation (26) that for every
1 ≤ m ≤ M the optimal weights α⋆⋆

m approximates

α⋆⋆
m ≃ nm

(
∑M

m=1 nm

)−1
. (27)

Hence by relation (27) we observe that for Y1,m, m = 1, ...,M having the same cdf that the pooled
sample variance estimator has a mean squared error close to the minimum mean squared error
unbiased estimator of the variance within the class ∑M

m=1 αmS2
nm

, αm ∈ R. Observe in quality
control (see section Section 6.3.2 of Montgomery (2009) for identically distributed samples the
biased estimator (

∑M
m=1(nm −1)S2

nm

∑M
m=1 nm −M

) 1
2

,

of the standard deviation is recommended without any explanation. By the previous analysis
this estimator of the standard deviation is approximately for nm large and the number of samples
small the square root of the minimum mean squared error unbiased estimator (within the class
∑M

m=1 αmS2
nm

) of the variance. In the next section we introduce sampling costs.

3 On sampling costs in quality control.
Suppose there exists M different independent subgroups from which we can generate samples
needed to estimate the unknown standard deviation or variance . It is assumed that all these
subgroups are in control and to collect a sample from each of these subgroups, we need to pay
sampling costs. It is assumed that generating a sample of size n from subgroup m = 1, ...,M
has sampling costs gm(n) with gm : Z+ → N denoting the increasing sampling cost function of
generating a sample of size n from this subgroup m. We assume for simplicity that the range of
the function gm is an integer and since we only consider samples with sample sizes bigger or equal
to 2 we assume without loss of generality for any of the independent subgroups m = 1, ...M that
gm(0) = gm(1) = 0. Since in practice we only deal with cost measured in certain units this integer
range assumption is not restrictive and simplifies our proposed dynamic solution procedure for
the general sampling cost case. We now like to determine, given our available budget B∈N, from
which of the independent subgroup m, m = 1, ...,M we should generate a sample and how large
this sample should be under the condition that our budget constraint is satisfied and the used
estimator for the unknown standard deviation or variance has minimum mean squared error
over all possible samples satisfying our budget constraint. Clearly, this is a static allocation
optimization problem. To formulate this static allocation problem for both the estimation of
the variance and the standard deviation introduce for every 1 ≤ m ≤ M the sequence of random
vectors Ym(n) = (Y1,m, ...,Yn,m), n ∈ N and the functions

fm(Ym(n)) := Sn,c(Ym(n)) =
2

√
1

n−1 ∑n
i=1(Yi,m −Y n,m)2, n ≥ 2,



Sampling costs in quality control 135

and let the function hm,k : N→ (0,∞), m = 1, ...,m be given by

hm,k(n) =


0 if n = 0,1

(E( f k
m(Ym(n)))

2

Var( f k
m(Ym(n)))

n ≥ 3

By Lemma 4 the static allocation problem for the standard deviation estimation problem is
given by

min
{

b2
(

1+∑M
m=1 hm,1(nm)

)−1
: ∑M

m=1 gm(nm)≤ B,n j ∈ N,1 ≤ j ≤ m
}
,

and for the variance estimation problem by

min
{

b4
(

1+∑M
m=1 hm,2(nm)

)−1
: ∑M

m=1 gm(nm)≤ B,n j ∈ N,1 ≤ j ≤ m
}
.

Since b > 0 it is equivalent to consider for both k = 1 or k = 2 the optimization problems

υ(Pk) := max
{
∑M

m=1 hm,k(nm) : ∑M
m=1 gm(nm)≤ B,n j ∈ N

}
.

For k = 2 it follows by relation (25) that the objective functions hm,2 for m = 1, ...,M are given by

hm,2(n) =
n

E
(

Y 4
1,m

)
− n−3

n−1

=
n

E
(

Y 4
1,m

)
−1+ 2

n−1 .
,n ≥ 2 (28)

It is easy to check that the functions hm,2 in relation (28) are increasing. Also for the standard
deviation problem we obtain by relation (22) that for normal independent subgroups m = 1, ...,M
it follows for every m = 1, ...M that

hm,1(n) = (γ2
n −1)−1, n ≥ 2. (29)

By Lemma 1 this function is also increasing. Due to the separability of both the objective
function and the restriction it is well known that for any increasing sampling cost functions gm,
1 ≤ m ≤ M both optimization problems can be solved by the following dynamic programming
recursion formulas. Introduce for j = 1, ...,M the sequences w j,k : N→ R+ given by

w j,k(y) = max
{
∑M

m= j hm,k(nm) : ∑M
m= j gm(nm)≤ y,n j ∈ N, j = m, ...,M

}
.

Clearly w1,k(B) = υ(Pk) and

wM,k(y) = max
{

hM,k(nM) : gM(nM)≤ y,n j ∈ N
}
.

Also it follows for every y ∈ {0, ...,B} that

w j,k(y) = max{h j,k(n j)+w j+1,k(y−g j(n j)) : n j ∈ N,g j(n j) ∈ {0, ...,y}}.



136 Amniattalab A. and Frenk J. B. G.

Figure 3: Plot of the function n → (γ2
n −1)−1.

Although both allocation problems can be solved by dynamic programming for any set of sam-
pling cost functions by computing iteratively the sequences w j,k from j = M up to 1 it is easy to
identify a close to optimal allocation for linear sampling cost functions given by

gm(n) =

 0 if n = 0,1

cmn if n ≥ 2
,cm ∈ N.

Since for k = 2 the functions in relation (28) are approximately linear a good heuristic is to
spend the whole budget on generating a sample from subgroup m∗ satisfying

m∗ = argmin
{

cm(E(Y 4
1,m)−1) : 1 ≤ m ≤ M

}
.

In case we consider the standard deviation estimation allocation problem for independent normal
subgroups we observe a similar behavior. As already noticed we conjectured using Lemma 1
that (γ2

n −1)−1 ≈ 2n and so the objective function in (29) is almost linear. In Figure 3 we listed
a plot of the function n → (γ2

n −1)−1 confirming our approximation.
Hence the functions hm listed in relation (29) are the same for every m and approximately a

linear function. This means that we should generate the samples from the cheapest subgroup
to obtain the best possible estimator of the process standard deviation. Since all subgroups
generate the same type of probabilistic information and give the same additional increase to the
objective function, one should, given the available budget, generate a sample having the largest
possible size. Such a sample has on average the smallest mean squared error. This means for
linear sampling costs it is a good heuristic to generate samples from the cheapest subgroup. In
this particular case one can generate the biggest sample size.

4 Conclusion.
In this paper, we give partly an overview and extension of the classical unbiased estimators
and their biased extensions used within R and S-charts for estimating the standard variation for
single and multiple independent subgroups. We also consider the case of estimating the variance
for single and multiple subgroups and unify both approaches for location-scale parameter fam-
ilies. We also propose a simple mathematical model in case we need to pay sampling costs for
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generating samples from different independent subgroups in our effort to construct an estimator
within a certain class of estimators having minimal mean squared error. Analyzing this static
model (contrary to for example using dynamic Bayesian type control charts (Makis (2008)))
confirms the intuition that, given the available budget and linear sampling cost functions, it is
a good strategy to generate the whole sample from one particular subgroup.
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Appendix A.
In the first section of this appendix we give the proofs of the main results mentioned in this
paper. In the second subsection we list some useful properties of the gamma function needed to
show the log convexity of the sequence γn, n ≥ 2.

A.1 Proof of the main results
We start this subsection with a proof of Lemma 1 discussing the global behaviour of the sequence
γn,n ≥ 2 occurring in a normal population.

Proof. Since it is well known that Γ(1
2) =

2
√

π,Γ(1) = 1 and Γ(α + 1) = αΓ(α) for every α > 0,
this shows γ2 = 2

√π
2 . Also by the definition of γn listed in relation (6), it follows for every n ≥ 2

γnγn+1 =
2

√
n−1

2
2

√
n
2

Γ( n−1
2 )

Γ( n+1
2 )

=

2
√

n−1
2

n−1
2

2

√
n
2
= 2

√
n

n−1
. (30)

Hence for every n ≥ 2 we obtain

γn+1 = γ−1
n

2

√
n

n−1
,

and we have verified relation (8). By Lemma 8, the non-negative sequence γn, n ≥ 2 is decreasing
and log-convex. This implies using relation (30) that for every n ≥ 2

γ2
n+1 ≤ γnγn+1 = 2

√
n

n−1
≤ γ2

n .

and we have verified relation (9). Using the inequalities in relation (9), it is easy to verify that
the limit relation holds.
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Next we present a proof of Lemma 2.

Proof. It follows for any k > 0

MSE(αT k) = Var(αT k)+
(
E(αT k)−bk

)2
= α2Var(T k)+

(
αE(T k)−bk

)2
. (31)

Since T (X)
d
= b f (Y) we obtain for every k > 0 that T k(X)

d
= bk f k(Y). This implies by relation

(31) that
MSE(αT k) = α2b2kVar

(
f k(Y)

)
+
(

αbkE( f k(Y))−bk
)2

= b2k pk(α), (32)

with
pk(α) = α2E( f 2k(Y))−2αE( f k(Y))+1.

Since the function pk is a convex quadratic function and by Lyapunovs inequality and E( f k(Y))>
0 we obtain E( f 2k(Y))> 0 the desired result follows by applying the first order conditions to the
function pk.

The next proof is a proof of Lemma 3 and is actually a special case of the above result for
k = 2.

Proof. It follows by relation (14) that Sn(X) = σ f (Y) with

f 2(Y) :=
1

n−1 ∑n
i=1(Yi −Y n)

2.

Since S2
n is an unbiased estimator of σ2 and Var(Yi) = 1 we obtain E( f 2(Y)) = 1. Also it can be

shown ((Cho and Cho, 2008),(Wilks, 1962)) that

0 ≤ Var
(

1
n−1 ∑n

i=1(Yi −Y n)
2
)
=

1
n

(
E(Y 4

1 )−
n−3
n−1

)
. (33)

Since
E( f 4(Y)) = Var

(
1

n−1 ∑n
i=1(Yi −Y 2

n

)
+1,

this yields
E( f 4(Y)) =

1
n

(
E(Y 4

1 )−
n−3
n−1

)
+1,

and applying Lemma 2 for k = 2 we obtain the desired result.

In the next proof we verify the generalization of the above result to subgroups as expressed
in Lemma 4.

Proof. Since the subgroups are independent and hence the random variables Tm, m = 1, ...,M
are also independent it follows using relations (15), (16) and (17) and introducing the random
vector Ym = (Y1,m, ...,Ynm,m) that

T (X1, ...,XM)
d
= bk ∑M

m=1 αm f k
m(Ym).
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This implies

MSE(T ) = Var(T )+bias(T )2

= b2k
(

∑M
m=1 α2

mVar
(

f k
m(Ym)

)
+
(
∑M

m=1 αkE( fm(Ym))−1
)2
)
.

(34)

To determine the optimal mean squared error we need to solve the unconstrained strictly convex
quadratic minimization problem

min
{

∑M
m=1 α2

mVar
(

f k
m(Ym)

)
+
(
∑M

m=1 αmE( f k
m(Ym))−1

)2
: αm ∈ R,1 ≤ m ≤ M

}
.

This optimal solution must be the unique solution of the first order conditions applied to the
above objective function and by substituting one can verify that this optimal solution is given
by α⋆ = (α⋆

1 , ....,α⋆
M) with

α⋆
m =

(
1+∑M

j=1
E( f k

m(Ym))

Var( f k
m(Ym))

)−1 E( f k
m(Ym))

Var( f k
m(Ym))

.

Substituting this into relation (34) yields the expression for the bias and optimal mean squared
error.

Finally we list the proof of Lemma 5.

Proof. By relation (34) we need to solve the strict convex optimization problem

min
{
∑M

m=1 α2
mVar( f k

m(Y
(m))) : ∑M

m=1 αmE( f k
m(Y

(m))) = 1,αm ∈ R,1 ≤ m ≤ M
}
.

Substituting now the suggested solution into the necessary and sufficient KKT conditions, we
obtain the desired result.

A.2 Some useful properties of gamma functions
First, we mention the following well-known definitions.

Definition 2. The function ψ : (0,∞)→ R given by

ψ (α) =
Γ(1)(α)

Γ(α)
,

with Γ(α) =
∫ ∞

0 tα−1e−tdt,α > 0 the well-known Gamma function is called the Digamma function.

Definition 3. The function f : (0,∞) → R is called completely monotone if all its derivatives
exist and for every x ≥ 0 and m ∈ Z+ it holds that

(−1)m f (m)(x)≥ 0,

with f (m)denoting the mth derivative of the function f .
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We now list the following result.

Lemma 7. The function p : (0,∞)→ R given by

p(α) = lnΓ
(

α +1
2

)
− lnΓ

(α
2

)
, (35)

is non-negative and satisfies (−1)m−1 p(m)(α)≥ 0 for every m ∈ N.

Proof. It follows for every m ∈ N and α ≥ 0 that

p(m)(α) =
1

2m−1

(
ψ(m−1)

(
α +1

2

)
−ψ(m−1)

(α
2

))
. (36)

In (Alzer, 1997) it is shown that the function h0 : (0,∞)→ R given by h0(α) = ln(α)−ψ(α) is
completely monotone on (0,∞). By the definition of h0 we obtain ψ(α) = ln(α)−h0(α) and so
for every m ∈ N

ψ(m)(α) =
(−1)m−1(m−1)!

αm −h(m)
0 (α).

This shows for every m ∈ N that

(−1)m−1ψ(m)(α) =
(−1)2m−2(m−1)!

αm +(−1)mψ(m)(α)≥ 0. (37)

Hence for m even it follows by relation (37) that ψ(m)(α)≤ 0, and so the function α → ψ(m−1) (α)
is decreasing. For m odd ψ(m)(α) ≥ 0, and so the function α → ψ(m−1) (α) is increasing. This
shows by relation (36) the result.

An easy application of Lemma 7 is given by the following result.

Lemma 8. The function γ0 : (1,∞)→ R given by γ0(x) = ln(γ(x)) with

γ(x) := 2

√
x−1

2
Γ( x−1

2 )

Γ( x
2)

,

is completely monotone.

Proof. Since αΓ(α) = Γ(α +1) for every α ≥ 0 we obtain

2γ0(x) = ln(γ(x)2) = ln

(
x−1

2
Γ2( x−1

2 )

Γ2( x
2)

)
= ln

(
Γ( x+1

2 )Γ( x−1
2 )

Γ2( x
2)

)
= p(x)− p(x−1),

with the function p listed in relation (35). This implies

γ(m(
0 (x) =

1
2

(
p(m)(x)− p(m)(x−1)

)
,

and since by Lemma 7, we know that (−1)m p(m+1)(x)≥ 0 we obtain the desired result.
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