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Abstract. In this paper, Kerridge’s inaccuracy measure and varinaccuracy of the ranked set
sample (RSS) are considered. By deriving the expression for Kerridge’s inaccuracy measure and
varinaccuracy of the rth order statistic, the expression for Kerridge’s inaccuracy measure and
varinaccuracy of RSS are obtained. Kerridge’s inaccuracy measure and varinaccuracy of moving
ranked set sample are also obtained.

Keywords: Inaccuracy measure; Order statistics; Ranked set sampling; Varinaccuracy.

1 Introduction
McIntyre (1952) introduced a sampling scheme named ranked set sampling (RSS) as a process
of improving the precision of the sample mean as an estimate of the population mean. In some
situations, the measurement of the variable of interest is costly and/or time-consuming, but the
ranking of variables related to the study variable can be easily done by a judgment method (see
Chen et al. (2004)). The procedure of ranked set sampling involves randomly choosing n set of
units, each of size n from a population, and then the units in each set are ranked using some
inexpensive methods. Then from the first set of n units, select the unit that has the lowest
rank. From the second set of n units, select the unit with the second lowest rank. The process
continues until the unit with nth rank is selected in the nth set. Then make measurements on
the variable of interest of the selected units. Let X(i:n) be the measurement made on the ith
selected units, then X(1:n),X(2:n), ...,X(n:n) constitute the ranked set sample.

Many authors modified the McIntyre (1952) method of ranked set sampling. Al-Odat and Al-
Saleh (2001) introduced a modified ranked set sampling scheme named moving extreme ranked
set sampling for improving the efficiency of the estimate of the population mean. The procedure
of moving the extreme ranked set sampling method is as follows. Choose n sets of random
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samples of sizes 1,2, ...,n respectively, from the population. Rank the units in each set using
the judgment method or some inexpensive methods, without making the actual measurement
of the variable of interest. Select the unit with rank one from each set and then take actual
measurement of selected units, we get a moving lower extreme ranked set sample (MLERSS)
and the method is known as moving lower extreme ranked set sampling. If we select the units
with maximum rank in each set and then take actual measurements of the selected units, we
get a moving upper extreme ranked set sample (MUERSS) and the method is known as moving
upper extreme ranked set sampling.

Let X be a non negative random variable with probability density function f (x). Shannon
(1948) introduced a measure of uncertainty as an average level of information associated with
the random variable X , known as Shannon Entropy and it is defined as

H(X) = E f
[
− ln[ f (X)]

]
=−

∫ ∞

0
f (x) ln[ f (x)]dx.

One of the generalization of Shannon entropy was done by Kerridge (1961). Let X and Y be two
absolutely continuous non negative random variables with distribution functions F and G and
probability density functions f and g, respectively. If F is the distribution function corresponding
to the observations and G is the distribution assigned by the experimenter, then the inaccuracy
measure of X and Y , proposed by Kerridge (1961) is given by

KI( f ,g) = E f
[
− ln[g(X)]

]
=−

∫ ∞

0
f (x) ln[g(x)]dx. (1)

The inaccuracy measure defined in (1) can also be called as cross-entropy of Y on X or the
relative distance between X and Y . In reliability analysis, Kerridge (1961) notion of inaccuracy
delves into the concept by examining the potential errors in expressing probabilities related to
different events in experiments. These errors can stem from two primary sources: one from
missing data and another from misspecification of the model. Kerridge’s inaccuracy measure is
designed to address both types of errors. Kayal and Sunoj (2017) studied a generalized Kerridge’s
inaccuracy measure for conditionally specified models.Taneja and Tuteja (1986) discussed about
the weighted inaccuracy measure. Ghosh and Kundu (2018) discussed the conditional cumulative
past version of Kerridge’s inaccuracy measure. Taneja et al. (2009) presented the dynamic
version of inaccuracy between two residual lifetime distributions. Here the information contents
are averaged over a known distribution. Kerridge’s inaccuracy measure has a significant role in
regression analysis for the Akaike information criteria. Applications of Kerridge’s measure in
coding theory can be seen in Nath (1968).

Recently, researchers have been interested in studying the scatter of information contents
of a random variable. The variability of the information component cannot be explained by
inaccuracy, which is the expected information content of suitability. Buono et al. (2021) intro-
duced a dispersion index between two random variables X and Y based on cross-entropy named



Varinaccuracy of ranked set sample 173

varianaccuracy defined as
VarKI( f ,g) =Var f

[
− ln[g(X)]

]
= E f [ln2 g(X)

]
−
[
E f

[
lng(X)

]]2

=
∫ ∞

0
f (x) ln2 g(x)dx−

[
KI( f ,g)

]2
.

The variance of information content have many applications in reliability study, estimation
etc. Varinaccuracy measures the discrepancy incurred in choosing a reference distribution.
Sharma and Kundu (2024) have discussed the residual and past varinaccuracy measures and
its application. Balakrishnan et al. (2024) discussed the dispersion indices based on Kerridge
inaccuracy measure.

Thapliyal and Taneja (2013, 2015) discussed the inaccuracy and residual inaccuracy of order
statistics. Ahmadi (2021) explained some results based on Kerridge’s inaccuracy measures of
records. Goel et al. (2018) discussed Kerridge’s inaccuracy measure for record statistics. Mo-
hammed (2019) discussed the inaccuracy measure in concomitants of ordered random variables
under Farlie-Gumbel-Morgenstern family. Mohammadi and Hashempour (2023) studied ex-
tropy based inaccuracy measure in order statistics. Chacko and George (2023, 2024) discussed
the extropy properties of ranked set samples when sampling is not perfect. George and Chacko
(2023) discussed the cumulative residual extropy properties of ranked set samples for Cambanis
type bivariate distributions. None of the previous work studied the varinaccuracy based on
ranked set samples. In this paper, we discuss Kerridge’s inaccuracy measure and varrinacuracy
for RSS and its modifications.

The paper is organized as follows. In section 2, Kerridge’s inaccuracy measure and varinac-
curacy between the distribution of the rth order statistic and parent distribution are explained.
Kerridge’s measure of inaccuracy of ranked set sample is explained in section 3. In section 4,
we explain the varriancccuracy of ranked set sample with examples. Section 5 gives Kerridge’s
inaccuracy measure of moving extreme ranked set sample. Varinaccuracy of moving extreme
ranked set sample is given in section 6. Finally, section 7 gives the concluding remarks.

2 Varinaccuracy between distribution of the rth order statistic
and the parent distribution

Let X1,X2, ...Xn be a random sample from a population with pdf f (x) and cdf F(x). If we arrange
Xi’s in ascending order of magnitude as X(1) ≤ X(2) ≤ ... ≤ X(n), then X(r) is called the rth order
statistic of Xi’s. Then, the pdf of rth order statistic is given by

fr:n(x) =
1

B(r,n− r+1)
(F(x))r−1(1−F(x))n−r f (x), (2)

where B(a,b) is the beta function. Therefore Kerridge’s inaccuracy measure between X(r) and X
can be written as

KI( fr:n, f ) =−
∫ ∞

0
fr:n(x) ln f (x)dx

= E
[
− ln f (X(r))

]
.
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Also, the varinaccuracy between distribution of X(r) and X can be written as

VarKI( fr:n, f ) =Var
[
− ln f (X(r))

]
.

Lemma 1. Let Mr:n(t) be the moment generating function of ln f (X(r)). Then, Mr:n(t) is given
by

Mr:n(t) = E[ f (F−1(U))]t ,

where U follows a beta distribution with parameters r and n− r+1.

Proof. From (2), we have

Mr:n(t) = E[et ln f (X(r))]

= E[ f t(X(r))]

=
∫ ∞

0

1
B(r,n− r+1)

(F(x))r−1(1−F(x))n−r f t+1(x)dx

=
∫ 1

0

1
B(r,n− r+1)

ur−1(1−u)n−r f t(F−1(u))du

= E[ f t(F−1(U))],

where U follows beta distribution with parameters r and n− r+1.

Theorem 1. Let Kr:n(t) be the cumulant generating function of ln f (X(r)). Then, KI( fr:n, f ) =
−K′

r:n(0) and VarKI( fr:n, f ) =K′′
r:n(0), where K′

r:n(0) and K′′
r:n(0) are the first and second derivatives

of Kr:n(t) at t = 0.

Proof. We have Kr:n(t) = lnMr:n(t). Therefore

K′
r:n(0) = E[ln f (X(r))], and K′′

r:n(0) =Var[ln f (X(r))].

Also,
KI( fr:n, f ) =−K′

r:n(0) and VarKI( fr:n, f ) = K′′
r:n(0).

Hence the theorem.

Example 1. If X follows uniform distribution over (a,b), then Mr:n(t) =
1

(b−a)t . Therefore

KI( fr:n, f ) =− ln(b−a) and VarKI( fr:n, f ) = 0.

Example 2. If X follows exponential distribution with pdf f (x) = θe−θx,x ≥ 0,θ > 0, then

Mr:n(t) = θ t−1 B(r,n− r+ t)
B(r,n− r+1)

.

Therefore

KI( fr:n, f ) =−
[

lnθ +ψ(n− r+1)−ψ(n+1)
]

=− lnθ +
r

∑
i=1

1
n− i+1
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Figure 1: Graph of VarKI( fr:n, f ) of exponential distribution.

and

VarKI( fr:n, f ) = ψ ′(n− r+1)−ψ ′(n+1)

=
r

∑
i=1

1
(n− i+1)2 ,

where ψ(.) is the digamma function and ψ ′(.) is the trigamma function.

Clearly VarKI( fr:n, f ) of exponential distribution is free from parameter. We have drawn the
graph of VarKI( fr:n, f ) for exponential distribution when n = 10 and is given in Figure 1.

Example 3. If X follows Pareto distribution with pdf f (x) = λβ λ

xλ+1 ,x ≥ β ,λ > 0,β > 0, then

Mr:n(t) =
λ t−1

β t−1

B(r,n− r+(t −1)(1+ 1
λ )+1)

B(r,n− r+1)
.

Therefore

KI( fr:n, f ) =−
[

lnλ − lnβ +(1+
1
λ
)ψ(n− r+1)− (1+

1
λ
)ψ(n+1)

]
= lnβ − lnλ +(1+

1
λ
)

r

∑
i=1

1
n− i+1

and

VarKI( fr:n, f ) = (1+
1
λ
)2ψ ′(n− r+1)− (1+

1
λ
)2ψ ′(n+1)

= (1+
1
λ
)2

r

∑
i=1

1
(n− i+1)2 .
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Figure 2: Graph of VarKI( fr:n, f ) of Pareto distribution.

We have drawn the graph of VarKI( fr:n, f ) for Pareto distribution for different values of λ
when n = 10 and is given in Figure 2.

Example 4. If X follows standard power distribution with pdf f (x) = ηxη−1,0 < x < 1,η > 0,
then

Mr:n(t) = η t−1
B(r,n− r+(t −1)(1− 1

η )+1)

B(r,n− r+1)
.

Therefore

KI( fr:n, f ) =−
[

lnη +(1− 1
η
)ψ(n− r+1)− (1− 1

η
)ψ(n+1)

]
=− lnη +(1− 1

η
)

r

∑
i=1

1
n− i+1

and

VarKI( fr:n, f ) = (1− 1
η
)2ψ ′(n− r+1)− (1− 1

η
)2ψ ′(n+1)

= (1− 1
η
)2

r

∑
i=1

1
(n− i+1)2 .

We have drawn the graph of VarKI( fr:n, f ) for power distribution for different values of η
when n = 10 and is given in Figure 3.

Remark 1. From Table 1, it is observed that if X , Y and Z follow standard power distribution
with pdf f (x) = ηxη−1,0 < x < 1,η > 0, exponential distribution with pdf g(y) = θe−θy,y ≥ 0,θ > 0
and Pareto distribution with pdf h(z) = λβ λ

zλ+1 ,λ > 0,β > 0,z ≥ β , respectively and if 1+ 1
λ ≥| 1− 1

η |,
then VarKI( fr:n, f )≤VarKI(gr:n,g)≤VarKI(hr:n,h).
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Figure 3: Graph of VarKI( fr:n, f ) of standard power distribution.

Table 1: Expressions for KI( fr:n, f ) and VarKI( fr:n, f ).

Distribution pdf KI( fr:n, f ) VarKI( fr:n, f )
Uniform 1

b−a , a < x < b − ln(b−a) 0
Exponential θe−θx,x ≥ 0,θ > 0 − lnθ +∑r

i=1
1

n−i+1 ∑r
i=1

1
(n−i+1)2

Pareto λβ λ

xλ+1 ,x ≥ β ,λ > 0,β > 0 lnβ − lnλ +(1+ 1
λ )∑r

i=1
1

n−i+1 (1+ 1
λ )

2 ∑r
i=1

1
(n−i+1)2

Standard power ηxη−1,0 < x < 1,η > 0 − lnη +(1− 1
η )∑r

i=1
1

n−i+1 (1− 1
η )

2 ∑r
i=1

1
(n−i+1)2

So if 1 + 1
λ ≥| 1 − 1

η |, discrepancy incurred in choosing the rth order statistic of power
distribution is less compared to those of exponential distribution and Pareto distribution.

Theorem 2. Let X and Y be two absolutely continuous non negative random variables with pdf
fX(x) and gX(x), then

VarKI( f ,g)≤
(∫

(KI( f ,g)+ ln fX(x))4dx
) 1

2
(

E( fX(X))
) 1

2
,

where KI( f ,g) is the Kerridge’s inaccuracy measure of X and Y .
The equality is attained by

(
KI( f ,g)+ ln fX(x)

fX(x)

)2

E( fX(X)) =
∫ [

KI( f ,g)+ ln fX(x)
]2dx.
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Proof. We have

VarKI( f ,g) = Eg [− ln fX(X)−Eg(− ln fX(X))]2

= E
[
− ln fX(X)−KI( f ,g)

]2

=
∫
(KI( f ,g)+ ln fX(x))2 fX(x)dx.

Then, by Cauchy- Schwartz inequality,

VarKI( f ,g)≤
(∫

(KI( f ,g)+ ln fX(x))4dx
) 1

2
(∫

( f (x))2dx
) 1

2

=
(∫

(KI( f ,g)+ ln fX(x))4dx
) 1

2
(

E( fX(X))
) 1

2
.

The equality is attained if and only if there is a constant α ≥ 0 such that

(KI( f ,g)+ ln fX(x))2 = α( fX(x))2.

The constant α can be evaluated as

α =

∫ [
KI( f ,g)+ ln fX(x)

]2dx
E( fX(X))

.

Hence the theorem.

Remark 2. Balakrishnan et al. (2024) showed that VarKI( f ,g) does not affect linear transfor-
mation. So clearly VarKI( fr:n, f ) is independent of scale parameter. This can be evident from
Examples 2 and 3 for exponential and Pareto distributions, respectively.

3 Kerridge’s inaccuracy measure of ranked set sample

Let X(r:n),r = 1,2, ...,n be a ranked set sample of size n from a population with pdf f (x) and cdf
F(x). If the ranking is perfect, then X(r:n) is nothing but the rth order statistic of a random
sample of size n.

Theorem 3. If XSRS = {X1,X2, ...,Xn} and XRSS = {X(1:n),X(2:n), ...,X(n:n)}, where X1,X2, ...,Xn is a
random sample from a population with pdf f (x) and cdf F(x), then the Kerridge’s inaccuracy
measure associated with ranked set sample and simple random sample can be written as

KI( fRSS, fSRS) =
n

∑
r=1

KI( fr:n, f ).
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Table 2: Expression for KI( fRSS, fSRS).
Distribution pdf KI( fRSS, fSRS)

Uniform 1
b−a ,a < x < b −n ln(b−a)

Exponential θe−θx,x ≥ 0,θ > 0 n(1− lnθ)
Pareto λβ λ

xλ+1 ,λ > 0,β > 0,x ≥ β n
(
1− lnλ + lnβ + 1

λ
)

Standard power ηxη−1,0 < x < 1,η > 0 n
(

1− lnη − 1
η

)

Proof. Let fSRS(x) and fRSS(x) be the pdfs of XSRS and XRSS, respectively, where x = (x1,x2, ...,xn).
Therefore, fSRS(x) = ∏n

r=1 f (xr) and fRSS(x) = ∏n
r=1 fr:n(xr). Then

KI( fRSS, fSRS) =−
∫ ∞

0

∫ ∞

0
...

∫ ∞

0
fRSS(x) ln fSRS(x)dx1dx2...dxn

= E
[
− ln fSRS(XRSS)

]
=

n

∑
r=1

E
[
− ln f (X(r:n))

]
=

n

∑
r=1

KI( fr:n, f ).

Hence the theorem.

Example 5. We obtained KI( fRSS, fSRS) for uniform, exponential, Pareto and standard power
distributions with the pdfs given as in Table 1, the results are summarized in Table 2.

4 Measure of Varinaccuracy of ranked set sample
Theorem 4. If XSRS = {X1,X2, ...,Xn} and XRSS = {X(1:n),X(2:n), ...,X(n:n)}, where X1,X2, ...,Xn is a
random sample from a population with pdf f (x) and cdf F(x), then the varinaccuracy between
ranked set sample and simple random sample can be written as

VarKI( fRSS, fSRS) =
n

∑
r=1

VarKI( fr:n, f ).

Proof. Let fSRS(x) and fRSS(x) be the pdfs of XSRS and XRSS, respectively, where x = (x1,x2, ...,xn).
Therefore, fSRS(x) = ∏n

r=1 f (xr) and fRSS(x) = ∏n
r=1 fr:n(xr). Then

VarKI( fRSS, fSRS) =Var
[
− ln fSRS(XRSS)

]
=Var

[
− ln

n

∏
r=1

f (X(r:n))
]

=
n

∑
r=1

Var
[
− ln f (X(r:n))

]
=

n

∑
r=1

VarKI( fr:n, f ).



180 Manoj Chacko and Varghese George

Table 3: Expression for VarKI( fRSS, fSRS).
Distribution pdf VarKI( fRSS, fSRS)

Uniform 1
b−a ,a < x < b 0

Exponential θe−θx,x ≥ 0,θ > 0 ∑n
i=1

1
i

Pareto λβ λ

xλ+1 ,λ > 0,β > 0,x ≥ β (1+ 1
λ )

2 ∑n
i=1

1
i

Standard power ηxη−1,0 < x < 1,η > 0 (1− 1
η )

2 ∑n
i=1

1
i

Example 6. We obtained VarKI( fRSS, fSRS) for uniform, exponential, Pareto and standard power
distributions with the pdfs given as in Table 1, the results are summarized in Table 3.

We have drawn the graph of VarKI( fRSS, fSRS) for exponential, Pareto and standard power
distributions and displayed in Figures 4, 5 and 6, respectively.

Figure 4: Graph of VarKI( fRSS, fSRS) for exponential distribution.

Remark 3. From Table 3 and the same assumptions of Remark 1, we have

VarKI( fRSS, fSRS)≤VarKI(gRSS,gSRS)≤VarKI(hRSS,hSRS).

So if 1+ 1
λ ≥| 1− 1

η |, discrepancy incurred in choosing RSS for power distribution is less
compared to those of exponential distribution and Pareto distribution.
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Figure 5: Graph of VarKI( fRSS, fSRS) for Pareto distribution.

5 Kerridge’s inaccuracy measure of moving extreme ranked set
sample

In this section, first we consider the Kerridge’s inaccuracy measure of MLERSS. Let X(1: j),
j = 1,2, ...n. be the measurement of the jth unit of MLERSS.

Theorem 5. If XSRS = {X1,X2, ...,Xn} and XMLERSS = {X(1: j), j = 1,2, ...,n}, where X1,X2, ...,Xn is
a random sample from a population with pdf f (x) and cdf F(x), then the Kerridge’s inaccuracy
measure between MLERSS and simple random sample can be written as

KI( fMLERSS, fSRS) =
n

∑
i=1

KI( f1:i, f ).

Proof. Let fSRS(x) and fMLERSS(x) be the pdfs of XSRS and XMLERSS, respectively, where x =
(x1,x2, ...,xn). Therefore, fSRS(x) = ∏n

i=1 f (xi) and fMLERSS(x) = ∏n
i=1 f1:i(xi). Then

KI( fMLERSS, fSRS) =−
∫ ∞

0

∫ ∞

0
...

∫ ∞

0
fMLERSS(x)ln fSRS(x)dx1dx2...dxn

= E
[
− ln fSRS(XMLERSS)

]
=

n

∑
i=1

E
[
− ln f (X(1:i))

]
=

n

∑
i=1

KI( f1:i, f ).

Hence the theorem.
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Figure 6: Graph of VarKI( fRSS, fSRS) for standard power distribution.

Next, we consider the Kerridge’s inaccuracy measure of MUERSS. Let X( j: j), j = 1,2, ...n. be
the measurement the jth unit of MUERSS.

Theorem 6. Let XSRS = {X1,X2, ...,Xn} and XMUERSS = {X( j: j), j = 1,2, ...,n} where X1,X2, ...,Xn is
a random sample from a population with pdf f (x) and cdf F(x), then, the Kerridge’s inaccuracy
measure between MUERSS and simple random sample can be written as of

KI( fMUERSS, fSRS) =
n

∑
i=1

KI( fi:i, f ).

Proof. Let fSRS(x) and fMUERSS(x) be the pdfs of XSRS and XMUERSS respectively, where x =
(x1,x2, ...,xn). Therefore, fSRS(x) = ∏n

i=1 f (xi) and fMUERSS(x) = ∏n
i=1 fi:i(xi). Then

KI( fMUERSS, fSRS) =−
∫ ∞

0

∫ ∞

0
...

∫ ∞

0
fMUERSS(x) ln fSRS(x)dx1dx2...dxn

= E
[
− ln fSRS(XMUERSS)

]
=

n

∑
i=1

E
[
− ln f (X(i:i))

]
=

n

∑
i=1

KI( fi:i, f ).

Example 7. We obtained KI( fMLERSS, fSRS) and KI( fMUERSS, fSRS) for uniform, exponential,
Pareto and standard power distributions with the pdfs given as in Table 1, the results are
summarized and presented in Table 4.
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Table 4: Expression for KI( fMLERSS, fSRS) and KI( fMUERSS, fSRS).
Distribution pdf KI( fMLERSS, fSRS) KI( fMUERSS, fSRS)

Uniform 1
b−a ,a < x < b −n ln(b−a) −n ln(b−a)

Exponential θe−θx,x ≥ 0 −n lnθ +∑n
i=1

1
i (n+1)∑n

i=1
1
i −n(1+ lnθ)

Pareto λβ λ

xλ+1 ,x ≥ β n lnβ −n lnλ +(1+ 1
λ )∑n

i=1
1
i n(lnβ − lnλ )+(1+ 1

λ )∑n
i=1 ∑i

j=1
1
j

Standard power ηxη−1,0 < x < 1 −n lnη +(1− 1
η )∑n

i=1
1
i −n lnη +(1− 1

η )∑n
i=1 ∑i

j=1
1
j

6 Measure of Varinaccuracy of moving extreme ranked set sam-
ple

In this section, first we consider the varentropy of MLERSS. Let X(1: j), j = 1,2, ...n. be the
measurement of the jth unit of MLERSS.

Theorem 7. If XSRS = {X1,X2, ...,Xn} and XMLERSS = {X(1: j), j = 1,2, ...,n}, where X1,X2, ...,Xn is
a random sample from a population with pdf f (x) and cdf F(x), then the varinaccuracy between
MLERSS and simple random sample can be written as of

VarKI( fMLERSS, fSRS) =
n

∑
i=1

VarKI( f1:i, f ).

Proof. Let fSRS(x) and fMLERSS(x) be the pdfs of XSRS and XMLERSS respectively, where x =
(x1,x2, ...,xn). Therefore, fSRS(x) = ∏n

i=1 f (xi) and fMLERSS(x) = ∏n
i=1 fi:i(xi). Then

VarKI( fMLERSS, fSRS) =Var
[
− ln fSRS(XMLERSS)

]
=Var

[
− ln

n

∏
r=1

f (X(1:i))
]

=
n

∑
i=1

Var
[
− ln f (X(1:i))

]
=

n

∑
i=1

VarKI( f1:i, f ).

We have drawn the graph of VarKI( fMLERSS, fSRS) for exponential, Pareto and standard power
distributions, is given in Figures 7, 8 and 9, respectively.

Next, we consider the varentropy of MUERSS. Let X( j: j), j = 1,2, ...n. be the measurement
the jth unit of MUERSS.

Theorem 8. Let XSRS = {X1,X2, ...,Xn} and XMUERSS = {X( j: j), j = 1,2, ...,n} where X1,X2, ...,Xn is
a random sample from a population with pdf f (x) and cdf F(x), then, the varinaccuracy between
MUERSS and simple random sample can be written as of

VarKI( fMUERSS, fSRS) =
n

∑
i=1

VarKI( fi:i, f ).
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Figure 7: Graph of VarKI( fMLERSS, fSRS) for exponential distribution.

Proof. Let fSRS(x) and fMUERSS(x) be the pdfs of XSRS and XMLERSS respectively, where x =
(x1,x2, ...,xn). Therefore, fSRS(x) = ∏n

i=1 f (xi) and fMUERSS(x) = ∏n
i=1 fi:i(xi). Then,

VarKI( fMUERSS, fSRS) =Var
[
− ln fSRS(XMUERSS)

]
=Var

[
− ln

n

∏
i=1

f (X(i:i))
]

=
n

∑
i=1

Var
[
− ln f (X(i:i))

]
=

n

∑
i=1

VarKI( fi:i, f ).

Example 8. We obtained VarKI( fMLERSS, fSRS) and VarKI( fMUERSS, fSRS) for uniform, exponen-
tial, Pareto and standard power distributions with the pdfs given as in Table 1, the results are
summarized and presented in Table 5.

Remark 4. From Table 5 and the same assumptions of Remark 1, we have

VarKI( fMLERSS, fSRS)≤VarKI(gMLERSS,gSRS)≤VarKI(hMLERSS,hSRS),

and
VarKI( fMUERSS, fSRS)≤VarKI(gMUERSS,gSRS)≤VarKI(hMUERSS,hSRS).

Figures 10, 11 and 12 show the graph of VarKI( fMUERSS, fSRS) for exponential, Pareto and
standard power distributions with the pdfs given as in Table 1, respectively.
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Figure 8: Graph of VarKI( fMLERSS, fSRS) for Pareto distribution.

Table 5: Expression for VarKI( fMLERSS, fSRS) and VarKI( fMUERSS, fSRS)
Distribution pdf VarKI( fMLERSS, fSRS) VarKI( fMUERSS, fSRS)

Uniform 1
b−a ,a < x < b 0 0

Exponential θe−θx,x ≥ 0,θ > 0 ∑n
i=1

1
i2 ∑n

i=1
i

(n−i+1)2

Pareto λβ λ

xλ+1 ,λ > 0,β > 0,x ≥ β (1+ 1
λ )

2 ∑n
i=1

1
i2 (1+ 1

λ )
2 ∑n

i=1
i

(n−i+1)2

Standard power ηxη−1,0 < x < 1,η > 0 (1− 1
η )

2 ∑n
i=1

1
i2 (1− 1

η )
2 ∑n

i=1
i

(n−i+1)2

7 Conclusion
In this work, we considered Kerridge’s inaccuracy measure and varinaccuracy of ranked set
sample and its different modifications. If we consider a ranked set sampling when ranking is
not perfect, the measurement of ith unit of the ranked set sample is nothing but the ith order
statistic, X(i) of the random sample. In this paper, we derived Kerridge’s inaccuracy measure
between X(i) and X and obtained its varinaccuracy. The expression for varinaccuracy between
X(i) and X for the exponential, standard power, and Pareto distributions are derived. We also
obtained an upper bound to varinaccuracy.

It is seen that Kerridge’s inaccuracy measure between the ranked set sample and simple
random sample can be written as the sum of Kerridge’s inaccuracy measure between X(i) and
X . Similarly, varinaccuracy between a ranked set sample and a simple random sample can be
written as the sum of varinaccuracy between X(i) and X . We also obtained the expression for
Kerridge’s inaccuracy measure and varinacccuracy based on moving ranked set samples. The
expression for Kerridge’s inaccuracy measure and varinaccuracy of exponential, standard power,
and Pareto distributions based on ranked set sample and moving extreme ranked set sample are
obtained. It is observed that if 1+ 1

λ ≥| 1− 1
η |, the discrepancy incurred in choosing RSS and
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Figure 9: Graph of VarKI( fMLERSS, fSRS) for standard power distribution.

moving extreme ranked set sample for power distribution is less than those of exponential and
Pareto distribution.
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