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Abstract. This article explores Bayesian inference for the reliability of the binomial distri-
bution in cases with zero-failure data. We propose Expected-Bayesian (E-Bayesian) and hier-
archical Bayesian estimators of reliability, considering three different joint prior distributions
of hyper-parameters in the prior distribution of reliability, which is assumed to follow a beta
distribution. We derive closed-form expressions for the E-Bayesian estimators of reliability and
propose hierarchical Bayesian estimators, which are subsequently evaluated using Monte Carlo
simulations. Furthermore, we study the one-sided modified Bayesian (M-Bayesian) lower cred-
ible limits for reliability. The performance of the proposed methods is demonstrated through
Monte Carlo simulations. Finally, a real data example is analyzed for illustrative purposes.

Keywords: E-Bayesian; Hierarchical Bayesian; M-Bayesian; Reliability; Zero-failure data.

1 Introduction
With the rapid advancement of manufacturing design techniques, many modern products are
designed to operate without failure for several years, decades or more, such as high reliability
and longevity products in aerospace, engineering and industry. In this situation, extensive dis-
cussions have taken place regarding reliability analysis for zero-failure data. Zero-failure data
refers to situations where the test units exhibit no failure within the specified life testing time.
Numerous statistical procedures have been proposed in the literature for analyzing reliability
in such scenarios. For example, Martz and Waller (1979), Mao and Xia (1992), Han (2009),
Chen et al. (1995) have contributed to this body of work. However, limited attention has been
given to simultaneously addressing both point and interval estimators of reliability parameters
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for zero-failure data. Notable exceptions include the works of Fan and Chang (2009) and Zhang
et al. (2019). In the paper, we will introduce and discuss the Expected-Bayesian (E-Bayesian)
estimator, hierarchical Bayesian estimator, and one-sided modified Bayesian (M-Bayesian) lower
credible limits of reliability for zero-failure data from the binomial distribution. These meth-
ods are explored under the assumption that the prior distribution of reliability follows a beta
distribution.

For the zero-failure data, Martz and Waller (1979) first proposed a Bayesian zero-failure
reliability demonstration testing procedure for an exponential failure-time model and a gamma
prior distribution on the failure rate. Following Martz and Waller (1979), special attention has
been paid to statistical analysis methods for zero-failure data. Mao and Luo (1989) proposed
the matching distribution curve method, and Chen et al. (1993) developed a optimal confidence
limit method. In addition, Fan and Chang (2009), Bailey (1997) and Fan et al. (2009) proposed
Bayesian methods for estimating the reliability of explosive devices with binary data from de-
structive tests, where exponential lifetime distributions were used. Han (2007) first proposed an
Expected-Bayesian (E-Bayesian) estimation method for estimating the failure probability, in the
case of zero-failure data or very few zero-failure data. Jiang et al. (2010) put forward a modified
maximum likelihood estimation (MMLE) and shrinkage estimation method to analyze zero-
failure data from Weibull distribution. Subsequently, on the base of the thought of hierarchical
prior distribution introduced by Lindley and Smith (1972). Han (2011) introduced E-Bayesian
and hierarchical Bayesian estimation methods to estimate the reliability of the binomial distri-
bution, however, the proposed methods only considered the case of only one hyper-parameter
in the prior distribution of the reliability. Xia (2012) proposed a grey bootstrap method in
the information poor theory for the reliability analysis of zero-failure data under the condition
of a known or unknown lifetime distribution. Nam et al. (2013) presented a new accelerated
zero-failure testing model for rolling bearings. Li et al. (2019) considered the classical Bayesian,
E-Bayesian and hierarchical Bayesian estimates of reliability for zero-failure data from Weibull
distribution, and confidence interval of reliability is also obtained by the parametric bootstrap
method. Zhang et al. (2019) provided a Bayesian reliability evaluation method for very few
failure data under the Weibull distribution. Zhang et al. (2021) proposed a Bayesian method for
analyzing few or zero failure data using re-parametrization of the Weibull distribution. However,
these researches only discussed the case of one of two hyper-parameters is random variable in
the prior distribution of failure probability or reliability.

In recent years, the credible (confidence) intervals of reliability parameters based on zero
failure data has also made new progress. For example, Han (2008) proposed a two-sided M-
Bayesian credible limits method of reliability parameters, in the case of zero-failure data from
exponential distribution; furthermore, the properties for two-sided M-Bayesian credible limits
of failure rate were discussed. Subsequently, Han (2012) put forward a M-Bayesian credible
limits method for estimating the reliability of binomial distribution, in the case of zero-failure
data. Tian and Chen (2014) studied interval estimates of failure rate and reliability for the
exponential distribution based on zero-failure data, using the method of two-sided M-Bayesian
credible limits. Jiang et al. (2015) presented a interval estimation method of failure probability
for Weibull distribution under zero-failure data situation. Zhang (2021) proposed a novel method
that does not require prior information for estimating Weibull parameters in the absence of
failure data, an unbiased estimator and confidence interval for the Weibull scale parameter are
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also obtained. However, these researches only considered the case of only one of two hyper-
parameters is random in the prior distribution of reliability parameter. In the following, we
aim to discuss the Bayesian inference for the reliability of binomial products, in the case of
zero-failure data. This discussion encompasses the point estimation method and one-sided M-
Bayesian lower credible limits for reliability, based on three different priors, when the prior
distribution of reliability is assumed to be a beta distribution with hyper-parameters a and b.

The remainder of this article is organized as follows. In Section 2, we will first introduce the
zero-failure data for type-I censored life testing and describe the prior distribution of reliability.
Section 3 then presents point estimation of reliability for zero-failure data, including E-Bayesian
estimator and hierarchical Bayesian estimator. In Section 4, we discuss one-sided M-Bayesian
lower credible limits of reliability in the case of zero-failure data, considering three different
joint prior distributions of hyper-parameters. In Section 5, numerical examples are provided,
and Section 6 contains some conclusions and several remarks.

2 Zero-failure data for type-I censored life testing
In this section, we first introduce the zero-failure data for highly reliable products in type-I
censored life testing. Furthermore, the prior distribution of reliability for zero-failure data is
assumed based on engineering experience.

2.1 The zero-failure data

In some cases in reliability engineering, determining the life distribution of products becomes
challenging when there is no failure information except for the number of failures. In such situ-
ations, reliability estimates can be obtained through the application of nonparametric methods
designed for binomial distribution.

In this article, we assume that the distribution of the lifetime T of products is unknown,
conduct type-I censored life testing k times, the censoring time of these independent trials are
denoted as t1, t2, ..., tk (0 < t1 < t2 < · · · < tk), respectively. There are ni testing samples at the
censoring time ti, i = 1,2, ...,k, if these testing units are all without failure at the censoring time
ti, it can be considered that the lifetimes of these testing units is greater than the censoring
time ti, i = 1,2, ...,k. Therefore, the corresponding test data of the k times type-I censored life
testing are called the zero-failure data, and denoted as (ti,ni), i = 1,2, ...,k. According to the
whole testing process of the type-I censored life testing, the following test information can be
obtained.

(1) At the beginning time of the type-I censored life testing, the reliability of products can be
expressed as R0 = Pr(T > 0) = 1.

(2) At the censoring time ti, the reliability of products denoted as Ri = Pr(T > ti), i = 1,2, ...,k,
it is clear that R0 > R1 > · · ·> Rk.

(3) Let si = ni+ni+1+ · · ·+nk, it indicates that there are si testing units survival at the censoring
time ti, i.e., si is the number of products which lifetime is longer than ti, i = 1,2, ...,k.
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Consequently, the above problem can be expressed as evaluating the reliability of products
by using the zero-failure data (ti,ni), i = 1,2, ...,k, in the type-I censored life testing.

2.2 The prior distribution of reliability
According to some engineering experience and the results of Han (2011), Beta distribution is
often used as the conjugate prior distribution of reliability (i.e., the probability of success) in the
reliability modeling of zero-failure data for binomial products. We thus take the beta distribution
Beta(a,b) as the conjugate prior distribution of the reliability Ri, and the probability density
function (pdf) of Ri is

π(Ri|a,b) =
1

B(a,b)
Ra−1

i (1−Ri)
b−1,0 < Ri < 1, i = 1,2, ...,k, (1)

where B(a,b) =
∫ 1

0 ta−1(1− t)b−1dt is the beta function, and hyper-parameters a > 0,b > 0.
With the continuous improvement of science and technology, the reliability of products is

constantly improved, so the possibility of high reliability of products is large, and the possibility
of low reliability is small. According to Han (2011), we choose a and b such that π(Ri|a,b) is an
increasing function of Ri. The derivative of π(Ri|a,b) with respect to Ri is

dπ(Ri|a,b)
dRi

=
Ra−1

i (1−Ri)
b−1

B(a,b)
[(a−1)(1−Ri)− (b−1)Ri] , i = 1,2, ...,k, (2)

Since a > 0,b > 0 and 0 < Ri < 1, from (2), we thus can easily see that dπ(Ri|a,b)/dRi > 0 on
a > 1,0 < b < 1, and then π(Ri|a,b) is an increasing function of Ri.

According to the results of Berger (1985) and Han (2011) on the Bayesian estimation, from
the perspective of the robustness of Bayesian estimation, the thinner the tail of a prior distri-
bution, and the worse the robustness of Bayesian estimation. Therefore, the hyper-parameter a
should not be too large, and there should be an upper bound c to be determined, where c is a
constant greater than 1. Thereby, the hyper-parameters a and b can be selected in the range of
1 < a < c and 0 < b < 1.

3 Point estimation of reliability
In this section, we investigate point estimation of reliability using the methods of E-Bayesian
estimation and hierarchical Bayesian estimation, respectively.

3.1 E-Bayesian estimator of reliability
Referring to the concept of E-Bayesian estimator of failure probability proposed by Han (2007),
this method is applicable in cases with either zero or few failure data. In this subsection, we
present E-Bayesian estimators of Ri under three different joint prior distributions of hyper-
parameters a and b in the prior distribution of Ri.

In the following, we first present the definition of the E-Bayesian estimator of Ri when the
prior distribution of Ri is distributed as Beta(a,b).
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Definition 1. Let R̂iB(a,b) be continuous, if∫∫
D

∣∣R̂iB(a,b)
∣∣π(a,b)dadb < ∞, i = 1,2, ...,k,

then
R̂iEB =

∫∫
D

R̂iB(a,b)π(a,b)dadb, i = 1,2, ...,k,

is called the Expected Bayesian (E-Bayesian) estimator of Ri, where R̂iB(a,b) is the Bayesian
estimator of Ri with hyper-parameters a and b, D = {(a,b)|1 < a < c,0 < b < 1}, π(a,b) is the pdf
of hyper-parameters a and b in the region D.

From the Definition 1, it is easy to see that the E-Bayesian estimator of Ri is the mathematical
expectation for the Bayesian estimator R̂iB(a,b), that is,

R̂iEB =
∫∫

D
R̂iB(a,b)π(a,b)dadb = E[R̂iB(a,b)], i = 1,2, ...,k.

According to the Bayesian theorem and the Definition 1, we have the following theorem, the
proof see Appendix A.

Theorem 1. For the zero-failure data (ti,ni) from the k times type-I censored life testing, let
si = ∑k

j=i n j, i = 1,2, ...,k. If the prior density function π(Ri|a,b) of Ri is presented by the formula
(1), then have the following conclusions.

(1) Using the squared error loss function, the Bayesian estimator of Ri is R̂iB(a,b) =
si +a

si +a+b
,

(2) For the following three different joint prior distributions of hyper-parameters a and b,

π1(a,b) =
2(c−a)
(c−1)2 , 1 < a < c,0 < b < 1, (3)

π2(a,b) =
1

c−1
, 1 < a < c,0 < b < 1, (4)

π3(a,b) =
2a

c2 −1
, 1 < a < c,0 < b < 1, (5)

the corresponding E-Bayesian estimators of Ri are presented as follows, respectively,

R̂iEB1 =
2

(c−1)2 [G1(si,c)−G2(si,c)] , i = 1,2, ...,k,

R̂iEB2 =
1

c−1
[G3(si,c)−G4(si,c)] , i = 1,2, ...,k,

R̂iEB3 =
2

c2 −1
[G5(si,c)−G6(si,c)] , i = 1,2, ...,k,

where G1(si,c) to G6(si,c) and q1(si,c) to q5(si,c) are provided in Appendix A.

It is easy to show that the E-Bayesian estimators of Ri in the Theorem 1 have the following
properties.
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Corollary 1. In Theorem 1, for the E-Bayesian estimators R̂iEB j (i = 1,2, ...,k, j = 1,2,3), the
following two properties are hold almost surely,

(1) For the fixed i, R̂iEB1 < R̂iEB2 < R̂iEB3;

(2) For the fixed i, lim
si→∞

R̂iEB1= lim
si→∞

R̂iEB2= lim
si→∞

R̂iEB3.

3.2 Hierarchical Bayesian estimator of reliability
In this subsection, we present the hierarchical Bayesian estimators of Ri (i = 1,2, ...,k), based on
three different joint prior distributions of hyper-parameters a and b. In the following, we first
introduce the hierarchical prior distribution of Ri (i = 1,2, ...,k).

According to the definition of hierarchical prior distribution proposed by Good (1983). If we
select π(Ri|a,b), which presented by the formula (1), as the prior density function of Ri, and take
formulas (3) to (5) as the joint prior distributions of hyper-parameters a and b, respectively,
then the hierarchical prior distributions of Ri (i = 1,2, ...,k) can be easily obtained. For instance,

π4(Ri) =
∫ 1

0

∫ c

1
π(Ri|a,b)π1(a,b)dadb =

2
(c−1)2

∫ 1

0

∫ c

1

(c−a)
B(a,b)

Ra−1
i (1−Ri)

b−1dadb, (6)

π5(Ri) =
∫ 1

0

∫ c

1
π(Ri|a,b)π2(a,b)dadb =

1
c−1

∫ 1

0

∫ c

1

1
B(a,b)

Ra−1
i (1−Ri)

b−1dadb, (7)

π6(Ri) =
∫ 1

0

∫ c

1
π(Ri|a,b)π3(a,b)dadb =

2
c2 −1

∫ 1

0

∫ c

1

a
B(a,b)

Ra−1
i (1−Ri)

b−1dadb. (8)

We can then use Bayes’ theorem to derive the hierarchical Bayesian estimators of Ri, and
the results are provided in the next theorem, the proof see Appendix B.
Theorem 2. For the zero-failure data (ti,ni) from the k times type-I censored life testing, let
si = ∑k

j=i n j, i = 1,2, ...,k. If the hierarchical prior distributions of Ri are given by (6) to (8), then
under the squared error loss function, the corresponding hierarchical Bayesian estimators of Ri

are, respectively,

R̂iHB1 =

∫ 1
0
∫ c

1 (c−a)
B(a+ si +1,b)

B(a,b)
dadb

∫ 1
0
∫ c

1 (c−a)
B(a+ si,b)

B(a,b)
dadb

, i = 1,2, ...,k,

R̂iHB2 =

∫ 1
0
∫ c

1
B(a+ si +1,b)

B(a,b)
dadb

∫ 1
0
∫ c

1
B(a+ si,b)

B(a,b)
dadb

, i = 1,2, ...,k,

R̂iHB3 =

∫ 1
0
∫ c

1 a
B(a+ si +1,b)

B(a,b)
dadb

∫ 1
0
∫ c

1 a
B(a+ si,b)

B(a,b)
dadb

, i = 1,2, ...,k.

Taking use of the Monte Carlo simulation method, we can easily get the hierarchical Bayesian
estimators of Ri in the Theorem 2.
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4 One-sided credible limits of reliability
In this section, we investigate the one-sided modified Bayesian (M-Bayesian) lower credible limits
of Ri (i = 1,2, ...,k), based on three different joint priors for the hyper-parameters a and b.

4.1 One-sided Bayesian lower credible limits
We first propose the following lemma, which aims to derive the one-sided Bayesian lower credible
limits of Ri (i = 1,2, ...,k) based on three different priors for the hyper-parameter a and b.

Lemma 1. For the zero-failure data (ti,ni) (i = 1,2, ...,k), if the prior distribution of Ri is given
by (1), that is Ri is a beta random variable with parameters a and b, we then have a+ si

b
1−Ri

Ri
follows a F distribution with the degrees of freedom 2b and 2(a+ si), i.e.,

a+ si

b
1−Ri

Ri
∼ F(2b,2(a+ si)), i = 1,2, ..,k.

By means of the Lemma 1 and the theory of Bayesian credible limits, we can easily obtain
the one-sided Bayesian lower credible limits of Ri. The result is given by the following corollary.

Corollary 2. For the zero-failure data (ti,ni) (i = 1,2, ...,k), if the prior distribution of Ri is
given by (1), then the 100(1−α)% one-sided Bayesian lower credible limit of Ri is

R̂iBL(a,b) =
a+ si

a+ si +bF1−α(2b,2(a+ si))
, i = 1,2, ...,k. (9)

where F1−α(2b,2(a+ si)) is the 1-α quantiles of F distribution with the degrees of freedom 2b and
2(a+ si).

4.2 One-sided M-Bayesian lower credible limits
In this subsection, we consider the one-sided M-Bayesian lower credible limits of Ri (i= 1,2, ...,k).
We thus first give the definition of one-sided M-Bayesian lower credible limit of Ri.

Definition 2. Let R̂iBL(a,b) be continuous, if∫∫
D

∣∣R̂iBL(a,b)
∣∣π(a,b)dadb < ∞, i = 1,2, ...,k,

then
R̂iMBL =

∫∫
D

R̂iBL(a,b)π(a,b)dadb, i = 1,2, ...,k,

is called the one-sided modified Bayesian (M-Bayesian) lower credible limit of the reliability
Ri, where D = {(a,b)|1 < a < c,0 < b < 1} is the domain of a and b, R̂iBL(a,b) is the one-sided
Bayesian lower credible limit of Ri with hyper-parameters a and b, π(a,b) is the pdf of hyper-
parameters a and b in the region D.

We have the following theorem about one-sided M-Bayesian lower credible limits of Ri, for
the proof see Appendix C.
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Theorem 3. For the zero-failure data (ti,ni) i = 1,2, ...,k, if the prior density function of Ri is
given by (1), then under the credible level of 1−α (0 < α < 1), for the three different joint prior
distributions (3) to (5) of the hyper-parameters a and b, the corresponding one-sided M-Bayesian
lower credible limits of Ri are, respectively,

R̂iMBL1 =
2

(c−1)2

∫ 1

0

∫ c

1

(c−a)(a+ si)

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ...,k,

R̂iMBL2 =
1

c−1

∫ 1

0

∫ c

1

a+ si

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ...,k,

R̂iMBL3 =
2

c2 −1

∫ 1

0

∫ c

1

a(a+ si)

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ...,k.

The one-sided M-Bayesian lower credible limits in Theorem 3 can be evaluated by the Monte
Carlo Integration method. Furthermore, the analysis results of the Monte Carlo simulation show
that the one-sided M-Bayesian lower credible limits have the following properties.

Corollary 3. In Theorem 3, for the one-sided M-Bayesian lower credible limits R̂iMBL j (i =
1,2, ...,k, j = 1,2,3), the following two properties are hold almost surely,

(1) For the specified i, R̂iMBL1 < R̂iMBL2 < R̂iMBL3,

(2) For the specified i, lim
si→∞

R̂iMBL1= lim
si→∞

R̂iMBL2= lim
si→∞

R̂iMBL3.

5 Numerical analysis

5.1 Simulation study

In this subsection, simulation study is conducted to investigate the performance of the point
estimators of Ri (including E-Bayesian and hierarchical estimators). According to the Theorems
1 and 2 in Section 3, by simulating the value of si (i = 1,2, ...,6), we can obtain the E-Bayesian
estimators R̂iEB j ( j = 1,2,3), and the hierarchical Bayesian estimators R̂iHB j ( j = 1,2,3). The
results of each R̂iEB j, R̂iHB j are shown in Tables 1 and 2, respectively.

It is clearly that from Tables 1 and 2, for the fixed i (i = 1,2, ...,k), the E-Bayesian estimators
R̂iEB j ( j = 1,2,3) are very close to each other for different values of c (4, 5, 6, 7, 8). In addition,
the same conclusion is suitable for the hierarchical Bayesian estimators R̂iHEB j ( j = 1,2,3). This
indicates that R̂iEB j, R̂iHB j ( j = 1,2,3) are all robust for different values of c. Therefore, in
practical application, we can take the midpoint of interval [4, 8] as the value of c, i.e., c = 6.
Besides, since R̂iEB j, R̂iHB j ( j = 1,2,3) are all robust for the specified c (4, 5, 6, 7, 8) under
three different joint prior distributions of hyper-parameters a and b, in order to reduce the
computational complexity, we thus suggest that the uniform distribution (??) can be used as
the joint prior distribution of a and b. Finally, for the same values of c and i, the E-Bayesian
estimators R̂iEB j are very close to hierarchical Bayesian estimators R̂iHB j, thus the E-Bayesian
method is preferred to estimate the reliability Ri.
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Table 1: The Monte Carlo simulation results of R̂iEB j ( j = 1,2,3) for different values of c.
c

si R̂iEB j 4 5 6 7 8
1000 R̂iEB1 0.999501 0.999501 0.999502 0.999502 0.999502

R̂iEB2 0.999502 0.999502 0.999502 0.999502 0.999503
R̂iEB3 0.999502 0.999502 0.999502 0.999503 0.999503

500 R̂iEB1 0.999005 0.999006 0.999007 0.999007 0.999008
R̂iEB2 0.999006 0.999007 0.999008 0.999009 0.999010
R̂iEB3 0.999007 0.999008 0.999009 0.999011 0.999012

100 R̂iEB1 0.995130 0.995145 0.995161 0.995176 0.995191
R̂iEB2 0.995153 0.995176 0.995199 0.995222 0.995244
R̂iEB3 0.995167 0.995197 0.995226 0.995256 0.995285

50 R̂iEB1 0.990504 0.990563 0.990620 0.990677 0.990732
R̂iEB2 0.990593 0.990679 0.990762 0.990844 0.990924
R̂iEB3 0.990646 0.990756 0.990864 0.990970 0.991074

20 R̂iEB1 0.977918 0.978223 0.978516 0.978798 0.979069
R̂iEB2 0.978385 0.978821 0.979234 0.979627 0.980001
R̂iEB3 0.978665 0.979219 0.979747 0.980249 0.980726

10 R̂iEB1 0.960392 0.961329 0.962204 0.963025 0.963797
R̂iEB2 0.961847 0.963139 0.964322 0.965412 0.966419
R̂iEB3 0.962720 0.964345 0.965835 0.967202 0.968459

5.2 An illustrative example

In this subsection, we present a real data set to assess the performances of the proposed methods
for estimating reliability based on zero-failure data. We consider the zero-failure data of type-I
censored life testing of engines from Han (2007), which is listed in Table 3 (time unit: hour).

According to the results of simulation study, we select c = 6 as a supper limit of the hyper-
parameter a. Therefore, according to the Theorems 1 and 2, we can easily obtain the E-Bayesian
estimators R̂iEB j ( j = 1,2,3), and the hierarchical Bayesian estimators R̂iHB j ( j = 1,2,3) of Ri

at each censoring time ti (i = 1,2, ...,9). The results are provided in Table 4 and Figure 1,
respectively.

By Theorem 3, with different credible levels 1 − α=0.99, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7,
and taking c =6 as a upper limit of hyper-parameter a, we can then obtain the one-sided M-
Bayesian lower credible limits R̂iMBL j ( j = 1,2,3) of Ri at each censoring time ti (i = 1,2, ...,9).
The corresponding results are presented in Table 5 and Figures 2 and 3.

According to the Table 5 and Figures 2 and 3, we can see that the one-sided M-Bayesian
lower credible limits of Ri satisfy the Corollary 3 under the same credible level 1-α. In addition,
Table 5 and Figures 2 and 3 show that there ia a very small difference among the three kinds of
one-sided M-Bayesian lower credible limits of Ri.
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Table 2: The Monte Carlo simulation results of R̂iHB j ( j = 1,2,3) for different values of c.
c

si R̂iHB j 4 5 6 7 8
1000 R̂iHB1 0.999845 0.999841 0.999838 0.999835 0.999832

R̂iHB2 0.999839 0.999834 0.999830 0.999827 0.999823
R̂iHB3 0.999836 0.999830 0.999825 0.999821 0.999817

500 R̂iHB1 0.999655 0.999645 0.999638 0.999631 0.999624
R̂iHB2 0.999641 0.999630 0.999620 0.999612 0.999604
R̂iHB3 0.999633 0.999620 0.999608 0.999598 0.999590

100 R̂iHB1 0.997749 0.997690 0.997640 0.997596 0.997556
R̂iHB2 0.997660 0.997590 0.997530 0.997480 0.997438
R̂iHB3 0.997612 0.997528 0.997460 0.997406 0.997357

50 R̂iHB1 0.994988 0.994876 0.994785 0.994704 0.994732
R̂iHB2 0.994813 0.994685 0.994589 0.994506 0.994639
R̂iHB3 0.994717 0.994572 0.994464 0.994377 0.994444

20 R̂iHB1 0.986136 0.985793 0.985880 0.985824 0.985802
R̂iHB2 0.985863 0.985751 0.985707 0.985708 0.985757
R̂iHB3 0.985725 0.985623 0.985605 0.985642 0.985728

10 R̂iHB1 0.971898 0.972036 0.972229 0.972512 0.972796
R̂iHB2 0.971990 0.972361 0.972809 0.973292 0.973778
R̂iHB3 0.972052 0.972548 0.973145 0.973780 0.974458

Table 3: The zero-failure data of some engine.
i 1 2 3 4 5 6 7 8 9
ti 250 450 650 850 1050 1250 1450 1650 1850
ni 3 3 3 3 4 4 4 4 4
si 32 29 26 23 20 16 12 8 4

Table 4: The estimators of R̂iEB j, R̂iHB j ( j = 1,2,3) of reliability of some engine at ti (i = 1,2, ...,9) (c = 6).
ti 250 450 650 850 1050 1250 1450 1650 1850

R̂iEB1 0.985833 0.984515 0.982926 0.980974 0.978516 0.974040 0.967197 0.955402 0.930041
R̂iHB1 0.991436 0.990469 0.989283 0.987794 0.985878 0.982282 0.976559 0.966194 0.942310
R̂iEB2 0.986152 0.984895 0.983386 0.981541 0.979234 0.975075 0.968815 0.958294 0.936684
R̂iHB2 0.991199 0.990233 0.989053 0.987583 0.985706 0.982230 0.976807 0.967228 0.946544
R̂iEB3 0.986381 0.985167 0.983715 0.981974 0.979747 0.975814 0.969971 0.960359 0.941430
R̂iHB3 0.991053 0.990087 0.988911 0.987453 0.985601 0.982198 0.976961 0.967968 0.949221
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Figure 1: E-Bayesian estimators R̂iEB j and hierarchical Bayesian estimators R̂iHB j of reliability Ri.
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(f)    1 − α = 0.7

Figure 2: One-sided M-Bayesian lower credible limits of reliability Ri at different credible level 1-α.
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(e)      t5 = 1050 h , s5 = 20
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(f)      t6 = 1250 h , s6 = 16
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Figure 3: One-sided M-Bayesian lower credible limits of reliability Ri for different credible level at each
censoring time.
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Table 5: One-sided M-Bayesian credible lower limits of Ri for different credible levels 1-α (c =6).
1−α

ti si R̂iHB j 0.99 0.95 0.90 0.85 0.80 0.75 0.7
250 32 R̂iMBL1 0.903628 0.939340 0.953827 0.961854 0.967281 0.971307 0.974455

R̂iMBL2 0.905528 0.940475 0.954643 0.962491 0.967797 0.971732 0.974809
R̂iMBL3 0.906885 0.941285 0.955226 0.962947 0.968166 0.972036 0.975062

450 29 R̂iMBL1 0.895819 0.934663 0.950460 0.959222 0.965150 0.969549 0.972990
R̂iMBL2 0.898069 0.936012 0.951431 0.959981 0.965765 0.970056 0.973413
R̂iMBL3 0.899677 0.936976 0.952125 0.960523 0.966204 0.970419 0.973715

650 26 R̂iMBL1 0.886458 0.929035 0.946401 0.956046 0.962577 0.967424 0.971220
R̂iMBL2 0.889164 0.930665 0.947576 0.956965 0.963322 0.968041 0.971733
R̂iMBL3 0.891098 0.931828 0.948415 0.957622 0.963854 0.968480 0.972099

850 23 R̂iMBL1 0.875030 0.922131 0.941412 0.952138 0.959408 0.964807 0.969039
R̂iMBL2 0.878347 0.924138 0.942863 0.953275 0.960330 0.965571 0.969673
R̂iMBL3 0.880716 0.925571 0.943898 0.954086 0.960988 0.966144 0.970127

1050 20 R̂iMBL1 0.860764 0.913460 0.935132 0.947212 0.955410 0.961503 0.966282
R̂iMBL2 0.864925 0.915993 0.936967 0.948652 0.956579 0.962472 0.967088
R̂iMBL3 0.867897 0.917803 0.938278 0.949681 0.957414 0.963162 0.967662

1250 16 R̂iMBL1 0.835142 0.897735 0.923696 0.938223 0.948103 0.955459 0.961235
R̂iMBL2 0.841038 0.901365 0.926340 0.940303 0.949794 0.956858 0.962404
R̂iMBL3 0.845249 0.903960 0.928228 0.941788 0.951002 0.957861 0.963236

1450 12 R̂iMBL1 0.796842 0.873848 0.906212 0.924428 0.936862 0.946142 0.953443
R̂iMBL2 0.805837 0.879485 0.910348 0.927695 0.939525 0.948351 0.955288
R̂iMBL3 0.812262 0.883514 0.913301 0.930027 0.941428 0.949932 0.956608

1650 8 R̂iMBL1 0.733382 0.833161 0.876101 0.900522 0.917297 0.929874 0.939803
R̂iMBL2 0.748753 0.843100 0.883482 0.906394 0.922107 0.933878 0.943158
R̂iMBL3 0.759733 0.850202 0.888754 0.910587 0.925544 0.936744 0.945559

1850 4 R̂iMBL1 0.608222 0.748032 0.811571 0.848596 0.874404 0.893959 0.909514
R̂iMBL2 0.640133 0.770141 0.828453 0.862237 0.885703 0.903440 0.917528
R̂iMBL3 0.662926 0.785934 0.840513 0.871982 0.893774 0.910220 0.923242
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6 Conclusion

This paper investigates point estimation and credible limits for the reliability of the binomial
distribution in the case of zero-failure data from a Bayesian perspective.

For the point estimation of reliability based on zero-failure data, the authors consider the E-
Bayesian and hierarchical Bayesian estimators, utilizing three different joint prior distributions
for the two hyper-parameters in the prior distribution of reliability. Besides, closed-form ex-
pressions for the E-Bayesian estimators of reliability are obtained, and the hierarchical Bayesian
estimators are evaluated using the Monte Carlo simulation method. The results of numerical
examples and a real example indicate that both the E-Bayesian estimators and hierarchical
Bayesian estimators are robust for different values of the upper bound c. Therefore, we suggest
selecting the midpoint of integer interval [4, 8] as the value of the upper bound c in applications,
namely, c=6. Besides, compared to the hierarchical Bayesian estimation method, the E-Bayesian
estimation method is much easier to implement in practical engineering applications.

To obtain the credible limits of reliability based on zero-failure data, we study the one-sided
M-Bayesian lower credible limits of reliability using three different joint prior distributions for
two hyper-parameters. We propose estimation expressions for these one-sided M-Bayesian lower
credible limits and discuss the properties of these estimators. The results of an illustrative
example show that the proposed one-sided M-Bayesian lower credible limits perform excellently,
and the properties of these estimators are stable.
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Appendix A

The proof of Theorem 1. (i) For the zero-failure data (ti,ni) (i = 1,2, ...,k) from the k times
type-I censored life testing. The likelihood function of Ri is

L(0|Ri) = Rsi
i , i = 1,2, ...,k.

We thus according to the Bayesian theorem, the posterior density function of Ri can be given
by,

π(Ri|si) =
L(0|Ri)π(Ri|a,b)∫ 1

0 L(0|Ri)π(Ri|a,b)dRi
=

Rsi+a−1
i (1−Ri)

b−1

B(si +a,b)
, i = 1,2, ...,k,
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this indicates that the posterior distribution of Ri is the Beta(si +a,b) distribution. Therefore,
using the squared error loss function, the Bayesian estimator of Ri is

R̂iB(a,b) =
∫ 1

0
Riπ(Ri|si)dRi =

1
B(si +a,b)

∫ 1

0
Rsi+a

i (1−Ri)
b−1dRi =

si +a
si +a+b

, i = 1,2, ...,k.

(ii) If the prior distributions of hyper-parameters a and b is presented by (3) to (5), then
according to the Definition 1, the E-Bayesian estimators of Ri can be provided as, respectively,

R̂iEB1 =
∫ c

1

∫ 1

0

si +a
si +a+b

· 2(c−a)
(c−1)2 dbda

=
2

(c−1)2

[∫ c

1
(si +a)(c−a) ln(si +a+1)da−

∫ c

1
(si +a)(c−a) ln(si +a)da

]
=

2
(c−1)2 [G1(si,c)−G2(si,c)],

R̂iEB2 =
∫ c

1

∫ 1

0

si +a
si +a+b

· 1
c−1

dbda

=
1

c−1

[∫ c

1
(si +a) ln(si +a+1)da−

∫ c

1
(si +a) ln(si +a)da

]
=

1
c−1

[G3(si,c)−G4(si,c)],

and

R̂iEB3 =
∫ c

1

∫ 1

0

si +a
si +a+b

· 2a
c2 −1

dbda

=
2

c2 −1

[∫ c

1
a(si +a) ln(si +a+1)da−

∫ c

1
a(si +a) ln(si +a)da

]
=

2
c2 −1

[G5(si,c)−G6(si,c)],

where

G1(si,c) =
1
2
(si + c+2)q1(si,c)− (si + c+1)q2(si,c)−

1
3

q3(si,c),

G2(si,c) =
1
2
(si + c)q4(si,c)−

1
3

q5(si,c),

G3(si,c) =
1
2

q1(si,c)−q2(si,c),

G4(si,c) =
1
2

q4(si,c),

G5(si,c) =−1
2
(si +2)q1(si,c)+(si +1)q2(si,c)+

1
3

q3(si,c),

G6(si,c) =
1
3

q5(si,c)−
si

2
q4(si,c),
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q1(si,c) = (si + c+1)2
[

ln(si + c+1)− 1
2

]
− (si +2)2

[
ln(si +2)− 1

2

]
,

q2(si,c) = (si + c+1) [ln(si + c+1)−1]− (si +2) [ln(si +2)−1] ,

q3(si,c) = (si + c+1)3
[

ln(si + c+1)− 1
3

]
− (si +2)3

[
ln(si +2)− 1

3

]
,

q4(si,c) = (si + c)2
[

ln(si + c)− 1
2

]
− (si +1)2

[
ln(si +1)− 1

2

]
,

q5(si,c) = (si + c)3
[

ln(si + c)− 1
3

]
− (si +1)3

[
ln(si +1)− 1

3

]
.

Appendix B

The proof of Theorem 2. Since the hierarchical prior densities function of Ri are given by (6)
to (8), respectively, we then according to the Bayesian theorem, the posterior densities function
of Ri can be expressed as follows, respectively,

h1(Ri|si) =
L(0|Ri)π4(Ri)∫ 1

0 L(0|Ri)π4(Ri)dRi
=

∫ 1

0

∫ c

1
(c−a)

Rsi+a−1
i (1−Ri)

b−1

B(a,b)
dadb∫ 1

0

∫ c

1
(c−a)

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k,

h2(Ri|si) =
L(0|Ri)π5(Ri)∫ 1

0 L(0|Ri)π5(Ri)dRi
=

∫ 1

0

∫ c

1

Rsi+a−1
i (1−Ri)

b−1

B(a,b)
dadb∫ 1

0

∫ c

1

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k,

h3(Ri|si) =
L(0|Ri)π6(Ri)∫ 1

0 L(0|Ri)π6(Ri)dRi
=

∫ 1

0

∫ c

1
a

Rsi+a−1
i (1−Ri)

b−1

B(a,b)
dadb∫ 1

0

∫ c

1
a

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k.

We therefore use the square error loss function, the corresponding hierarchical Bayesian estima-
tor of Ri can be presented as, respectively,



Bayesian inference of reliability in the case of zero-failure data 207

R̂iHB1 =
∫ 1

0
Rih1(Ri|si)dRi =

∫ 1

0

∫ c

1
(c−a)

B(a+ si +1)
B(a,b)

dadb∫ 1

0

∫ c

1
(c−a)

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k,

R̂iHB2 =
∫ 1

0
Rih2(Ri|si)dRi =

∫ 1

0

∫ c

1

B(a+ si +1)
B(a,b)

dadb∫ 1

0

∫ c

1

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k,

R̂iHB3 =
∫ 1

0
Rih3(Ri|si)dRi =

∫ 1

0

∫ c

1
a

B(a+ si +1)
B(a,b)

dadb∫ 1

0

∫ c

1
a

B(a+ si,b)
B(a,b)

dadb
, i = 1,2, ...,k.

Appendix C
The proof of Theorem 3. For the three different prior densities function π1(a,b),π2(a,b),π3(a,b)
of hyper-parameters a and b shown in (3) to (5), respectively, taking use of the Definition 2 and
formula (9) of the Corollary 2, the one-sided M-Bayesian lower credible limits of Ri are given
by, respectively

R̂iMBL1 =
∫∫

D
R̂iB(a,b)π1(a,b)dadb =

2
(c−1)2

∫ 1

0

∫ c

1

(c−a)(a+ si)

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ..,k,

R̂iMBL2 =
∫∫

D
R̂iB(a,b)π2(a,b)dadb =

1
c−1

∫ 1

0

∫ c

1

a+ si

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ..,k,

R̂iMBL3 =
∫∫

D
R̂iB(a,b)π3(a,b)dadb =

2
c2 −1

∫ 1

0

∫ c

1

a(a+ si)

a+ si +bF1−α(2b,2(a+ si))
dadb, i = 1,2, ..,k.
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