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Abstract. We develop a new class of flexible replicated measurement error models (RMEM)
based on the normal two-piece scale mixture (TP-SMN) family to model the distribution of the
latent variable. In the proposed approach, the replicated observations are jointly modeled by a
mixture of two components from a scale mixture skew-normal (SMSN) density. The flexibility of
this class can enable the simultaneous accommodation of skewness, outliers, and multimodality.
The proposed connection between the unobserved covariates and the response facilitates the
construction of an EM-type algorithm to perform maximum likelihood estimation. The effec-
tiveness of the maximum likelihood estimations is studied through the simulation studies. Also,
the method is applied to analyze continuing survey data on food intake by individuals on diet
habits.

Keywords: ECM algorithm; Equation error; Replicated measurement error model; Two-piece scale mix-
ture normal.

1 Introduction
A broad coverage of the measurement error model (MEM) has been extensively studied in the
literature; see, for example, Carroll et al. (2006), Cheng and Van Ness (1999), Fuller (1987),
Gustafson (2004) and Buonaccorsi (2010). These studies assumed that the distribution of the
random errors and the unobserved covariate is Gaussian, which is sometimes not feasible as
the model is sensitive to skewness, outliers, and unobserved heterogeneity in the data. In the
context of MEMs, this can lead to some particular problems for these types of models. First,
a non-identifiability problem in normal MEMs (Reiersol (1950)) can occur because one can
not establish a single relationship between the parameters of the jointly distribution of the ob-
servations and the parameters of the model, consequently, no consistent estimator of the key
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parameter, i.e., slope parameter, exists. To avoid this difficulty we may use prior knowledge
of the error variances or make some assumptions on the error variances in advance, while such
prior knowledge/assumptions are usually not easy to justify. Fortunately, the non-identifiability
problem can be overcome in the case of replicated measurement error models (RMEMs) as the
error variances can be estimated separately or together with other parameters. In this case, we
refer the reader to Chan and Mak (1979), Isogawa (1985), and Lin et al. (2004). Second, re-
cently, Lin and Cao (2013) considered a new replicated structural MEM in which the replicated
observations jointly follow scale mixtures of normal (SMN) distributions. The scale mixture
normal replicated measurement error model (SMN-RMEM) provides an appealing robust alter-
native to the usual model based on normal distributions, which also takes advantage of SMN
distributions to accommodate extreme and outlying observations. Cao et al. (2015) considered
models containing both error-prone covariates and predictors measured without errors, under
multivariate SMN-RMEM, providing appealing robust and adaptable alternatives to the usual
Gaussian assumptions. Third, the normality assumption and even SMN distributions, however,
may be violated when a data set contains asymmetric outcomes. Cao et al. (2018) developed a
new RMEM in the class of scale mixtures of skew-normal (SMSN) distributions. There can still
be problems related to the simultaneous occurrence of skewness, discrepant observations, and
multimodality.
Unlike other constructions in RMEMs, our model is formulated by replacing the normal as-
sumption of the classical formulations by a more flexible class of distributions, called two-piece
scale mixture normal (TP-SMN) distributions for one of the components, while retaining SMN
for the others. Specific distributions in this family, including univariate versions of two-piece
normal (TP-N), two-piece t (TP-T) with ν degrees of freedom, two-piece slash (TP-SL) and
two-piece contaminated normal (TP-CN), are examined for the unobserved value of the covari-
ates. In this approach, latent covariates and random observational errors are jointly modeled by
a two-component mixture of SMSN densities. However, we view our construction as based on
the TP-SMN assumption, as highlighted by the title, while the two-component SMSN likelihood
is a mathematical implication of the assumption. Moreover, unlike a similar model previously
proposed by Cao et al. (2018), the SMSN and TP-SMN families have different properties (for
example, different tail behavior). In addition, numerical stability might also be a property that
could be used to motivate our proposed model for the explanatory variable. This means that es-
timating the skewness parameter in the TP-SMN class of distributions is often easier, and more
stable than estimating the shape parameter in the SMSN family (which controls the asymmetry,
tails, location of the mode, and spread of the density).
The rest of this paper is organized as follows. Section 2 gives a brief description of the TP-SMN
and SMSN distributions. Section 3, the replicated structural measurement error model with
TP-SMN distributions (TP-SMN-RMEM) is defined, Proposition 3.1 represents the main result
for this section. In Section 4, the advantages in terms of efficiency and robustness of MLEs of
model (4) based on the ECM technique studied by Meng and Rubin (1993) are considered. A
closed form expression is also obtained for the asymptotic covariance matrix of the ML esti-
mators. In Section 5, the performance of the model and the importance of equation error are
examined via simulation studies. Section 6 applies the model to analyze the inner relationship
between saturated fat and caloric intake in CSFII data. Some conclusions are given in Section
7.
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2 Asymmetric heavy-tailed distributions
2.1 Two-piece scale mixture normal (TP-SMN) distributions
Following Andrews and Mallows (1974) the pdf of random variable X ∼ SMN(µ,σ ,ν) is denoted
as,

fSMN(x; µ,σ ,ν) =
∫ ∞

0
ϕ
(
x; µ,κ(u)σ2)dH(u;ν), y ∈ R,

where ϕ(.; µ,σ2) represents the pdf of N(µ,σ2) distribution, H(.;ν) is the cdf of the scale mixing
random variable U which is indexed by parameter ν. Also, X ∼ SMN(µ,σ ,ν) has the stochastic
representation given by

X d
= µ +σκ1/2(U)W, x ∈ R,

where W follows the standard normal distribution and is assumed to be independent of U .
The TP-SMN family is an analogy and alternative to the SMSN family, which contains the

light/heavy-tailed and symmetry/asymmetry members including the TP-N, TP-t, TP-SL, and
TP-CN distributions.

Definition 1. Following a general two-piece distribution from Arellano-Valle et al. (2005), the
pdf of random variable Y ∼ T P−SMN(µ,σ ,γ,ν) for y ∈ R can be defined as,

fT P−SMN(y; µ,σ ,γ,ν) =

{
2(1− γ) fSMN(y; µ,σ(1− γ),ν), I(−∞,µ](y)
2γ fSMN(y; µ,σγ ,ν), I[µ,∞)(y),

(1)

where γ ∈ (0,1) is the slant parameter, IA(x) denotes the indicator function of the set A.

Maleki and Mahmoudi (2017) studied the MLE problem for the parameters of the TP-
SMN family using an EM-type algorithm. Barkhordar et al. (2022) proposed and examined
the performance of a Bayesian approach for a homoscedastic nonlinear regression (NLR) model
assuming errors with TP-SMN distributions. Maleki et al. (2019c) and Hoseinzadeh et al. (2021)
examined the performance of the TP-SMN family in the context of NLR models (TP-SMN-NLR)
using an EM-type algorithm to obtain MLEs for the parameters. Zarei et al. (2022) developed
a general class of robust mixture regression model based on two-piece scale mixtures of normal
distributions (TP-SMN) . For more details of stochastic representations, statistical inferences,
and applications of the TP-SMN family, see Maleki et al. (2019d), Moravveji et al. (2019),
Arellano-Valle et al. (2020), and Ghasami et al. (2020).

Corollary 1. Let Y ∼ T P−SMN(µ,σ ,γ,ν), then Y has a stochastic representation given by,

i. Y d
= µ +σκ1/2(U)WγV , where V is a continuous random variable with density function

2ϕ(v)I[0,∞)(v), the standard half-normal density, and Wγ is an independent discrete random
variable with probability function

p(w;γ) = γ(1+s)/2(1− γ)(1−s)/2I{−1,1}(s), (2)

with s = sign(w). Equivalently, if Y d
= µ +σWγ |X |, where X ∼ SMN(0,1,ν) and is indepen-

dent of Wγ , then Y ∼ T P−SMN(µ,σ ,γ,ν).
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2.2 Examples of the TP-SMN distributions

In this section, we present some members of the TP-SMN family which are examined for the
unobserved value of the covariates. We consider the case where κ(u) = 1/u.
Two-piece normal distribution Two-piece normal, TP-N(µ,σ ,γ), distribution is obtained
from Eq. (1) when P(U = 1) = 1.

f (y; µ,σ ,γ,ν) =

{
2(1− γ)ϕ(y; µ,σ2(1− γ)2), I(−∞,µ](y),
2γϕ(y; µ,σ2γ2), I[µ,∞)(y).

Arellano-Valle et al. (2020) studied the main properties of the TP-N distribution.
Two-piece t distribution The pdf of a two-piece t distribution with ν degree of freedom,
TP-t(µ,σ ,γ,ν) say, is derived from Eq. (1) by taking U to be distributed as Gamma(ν/2,ν/2),
ν > 0.

f (y; µ,σ ,γ,ν) =


2 Γ( ν+1

2 )

Γ( ν
2 )
√

νπσ

(
1+ 1

ν (
y−µ

σ(1−γ))
2
)− ν+1

2
, I(−∞,µ](y),

2 Γ( ν+1
2 )

Γ( ν
2 )
√

νπσ

(
1+ 1

ν (
y−µ
σγ )

2
)− ν+1

2
, I[µ,∞)(y).

Two-piece slash distribution Two-piece slash distribution, denoted by TP-SL(µ,σ ,γ,ν),
arises when U has Beta(ν ,1) distribution. The TP-SL pdf is then given by

f (y; µ,σ ,γ,ν) =

{
2ν(1− γ)

∫ 1
0 uν−1ϕ(y; µ,u−1σ2(1− γ)2)du, I(−∞,µ](y),

2νγ
∫ 1

0 uν−1ϕ(y; µ,u−1σ2γ2)du, I[µ,∞)(y).

Two-piece contaminated normal distribution Another member of the TP-SMN family is
known as the two-piece contaminated normal distribution, and denoted by T P−CN(µ,σ ,γ,ν1,ν2),
arises when U is a discrete random variable with probability function

h(u;ν1,ν2) = ν1I(u=ν2)+(1−ν1)I(u=1), where 0 < νi < 1 for i = 1,2.

In this case, the random variable Y has pdf given by

f (y; µ,σ ,γ,ν) =

{
2(1− γ)(1−ν1)ϕ(y; µ,σ2(1− γ)2), I(−∞,µ](y),
2γν1ϕ(y; µ,ν−1

2 σ2γ2), I[µ,∞)(y).

2.3 Scale mixture skew-normal distributions

Following Branco and Dey (2001) a random vector Y has a multivariate scale mixture skew-
normal distribution (SMSN) with location vector µ, positive definite scale matrix Ω and skew-
ness/shape vector λ, denoted by Y ∼ SMSNp(µ,Ω,λ,ν), if its pdf is given by

fSMSN(y;µ,Ω,λ,ν) =
∫ ∞

0
2ϕp (y;µ,κ(u)Ω)Φ

(
κ−1/2(u)A

)
dH(u;ν),
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where A = λ⊤Ω− 1
2 (y−µ). The SMSN random vector Y can be introduced as the location-scale

transformation, following the stochastic representation given by

Y = µ+κ1/2(U)Ω
1
2 X, (3)

where following Arellano-Valle and Genton (2005), the random vector X has a multivariate
skew-normal (SN) distribution denoted by X ∼ SNp(0,Ip,λ) with the pdf given by

fSN(x;0,Ip,λ) = 2ϕp(x;Ip,λ)Φ(λ⊤x), x ∈ Rp.

From (3) it follows straightforward that Y|U = u ∼ SNp(µ,κ(u)Ω,λ). Thus, using Eq.(3), it can
be shown that the mean vector and variance-covariance matrix of Y are given, respectively, by

E(Y) = µ+

√
2
π

E
(

κ
1
2 (U)

)
∆,

V (Y) = E(κ(U))Ω− 2
π

E
(

κ
1
2 (U)

)2
∆∆⊤.

where δ = λ/(1+λ⊤λ)
1/2, and ∆=Ω1/2δ.

3 The TP-SMN structural RMEM

The proposed model can be described below. Suppose that we observe (Xt ,Yt), as surrogates of
true (latent) unobserved variables (xt ,yt), plus additive measurement errors (δt ,ξt), that is, they
satisfy an incomplete linear relationship yt = α +βxt + et , in which the equation error et means
that in some situations, the true variables are not perfectly related if factors other than xt are
responsible for the variation in yt . Note that the equation error does not need to exist, which
means that et = 0. In this case, the model is known as a no-equation-error model. Suppose that
xt and yt are observed p and q times (respectively) to make replicated observations X (i)

t and Y ( j)
t .


X (i)

t = xt +δ (i)
t , i = 1, . . . , p,

Y ( j)
t = yt +ξ ( j)

t , j = 1, . . . ,q,
yt = α +βxt + et , t = 1, . . . ,n.

(4)

By introducing the vectors Zt = (X⊤
t ,Y⊤

t )
⊤, where Xt = (X (1)

t , . . . ,X (p)
t )

⊤
and Yt = (Y (1)

t , . . . ,Y (q)
t )

⊤
,

and ϵt = (δ (1)
t , . . . ,δ (p)

t ,et + ξ (1)
t , . . . ,et + ξ (q)

t )⊤, a = (0⊤p ,α1⊤q )⊤ , b = (1⊤p ,β1⊤q )⊤. Model (4) can
be written compactly as

Zt = a+bxt +ϵt . (5)

Thus, from Eq. (5) the distribution of Zt becomes specified once the joint distribution of
rt = (xt ,ϵt

⊤)
⊤ is specified. To obtain robust estimation of the parameters, we propose to replace
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the normal assumption by

Ut
iid∼ H(u;ν), t = 1, . . . ,n,

xt |Ut = ut
iid∼ T P−N(µx,u

−1/2
t σx,γx), i.e., xt

iid∼ T P−SMN(µx,σx,γx,ν),

δ (i)
t |Ut = ut

iid∼ N(0,u−1
t ϕδ ), i.e., δ (i)

t
iid∼ SMN(0,ϕδ ,ν), (6)

ξ ( j)
t |Ut = ut

iid∼ N(0,u−1
t ϕξ ), i.e., ξ ( j)

t
iid∼ SMN(0,ϕξ ,ν),

et |Ut = ut
iid∼ N(0,u−1

t ϕe), i.e., et
iid∼ SMN(0,ϕe,ν),

which we call the two-piece scale mixture replicated measurement error model (TP-SMN-RMEM).
From (5) and (6), since for each t, xt and ϵt are indexed by the same scale mixing factor Ut ,
they are not independent. However, xt and ϵt are conditionally independent, which implies
cov(xt ,ϵt |Ut) = 0. Model (4) can be specified equivalently in the hierarchical form as

Zt |xt ,Ut = ut
iid∼ Nm(a+bxt ,u−1

t Σ),

xt |Ut = ut
iid∼ T P−N(µx,u

−1/2
t σx,γx), (7)

Ut
iid∼ H(ut ;ν),

where m = p+q, c = (0⊤p ,1⊤q )⊤, D(.) denotes a diagonal matrix and Σ is a m×m block matrix
as follows

Σ= D(ϕ)+ϕecc⊤ =

[
Σδ 0
0 Σe,ξ

]
, (8)

with Σδ = ϕδ Ip and Σe,ξ = ϕξ Iq +ϕe1q1q
⊤.

The following proposition represents the main result for this section. The vector of parame-
ters is denoted by θ = (α,β ,µx,σx,γx,ϕe,ϕδ ,ϕξ )

⊤.

Proposition 1. Under the hierarchical representation defined by (7), the observed random
vectors (z1, . . . ,zn) are drawn independently from the common distribution given by

f (zt ;θ) = γx fSMSN(zt ;µ,Ωγx ,λγx ,ν)

+(1− γx) fSMSN(zt ;µ,Ω1−γx ,−λ1−γx ,ν), zt ∈ Rm, (9)

where

µ= a+bµx,

Ωγx =Σ+ γx
2σ2

x bb⊤,

λγx =
γxσ x√

1−σ2
x γ2

x b⊤Ω−1
γx b

Ω
−1/2
γx b.

Similarly, Ω1−γx and λ1−γx could be defined by using 1− γx instead of γx.
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Using the well-known Sherman-Morrison formula

Ω−1
γx

=
(
Σ+σ2

x γ2
x bb⊤

)−1
=Σ−1 − γ2

x σ2
x Σ

−1bb⊤Σ−1

1+σ2
x γ2

x b⊤Σ−1b
.

Since we assume that xt ∼ T P− SMN(µx,σx,γx,ν), based on Corollary 1, the stochastic repre-
sentation of xt is xt

iid
= µx +U−1/2

t wtvt for wt ∈ {γx,−(1− γx)}, which is a random variable with
probability function p(wt ;γx) given by (2), and vt ∼ HN(0,σ2

x ;(0,∞)), and Ut ∼ H(.;ν) then we
have the equivalent formulation of our model.

Proposition 2. The structural TP-SMN-RMEM defined by (7) has a hierarchical representation
as follows,

zt |vt ,wt ,ut
ind.∼ Nm(a+bµx +bvtwt ,u−1

t Σ),

vt |ut
i.d.d.∼ HN(0,u−1

t σ2
x ;(0,∞)),

wt
i.i.d.∼ p(.;γx), (10)

Ut
i.i.d.∼ H(.;ν),

where vt |ut and wt are independent variables, for t = 1, . . . ,n.

As a first consequence of Proposition 2, we compute the first two moments of the observation
variables zt . Using Corollary 1, equation (5) and the hierarchical representation given by (7),
we obtain

E(Zt) = E(E(Zt |xt)) = a+bµx +bσx(2γx −1)

√
2
π

E
(

U−1/2
t

)
,

var(Zt) = var(E(Zt |xt))+E(var(Zt |xt))

= E
(
U−1

t
)(

Σ+[γ3
x +(1− γx)

3]σ2
x bb⊤

)
− 2

π
E
(

U−1/2
t

)2
(2γx −1)2σ2

x bb⊤.

Denoting the t-th complete dataset by zct = {zt ,vt ,wt ,ut}, according to

f (zt ,vt ,w,ut ;θ) = f (zt |vt ,wt ,ut ;θ) f (vt |ut ;θ)p(wt ;γx)h(ut ;ν) (11)
= ϕm(zt ;a+bµx +bvtwt ,u−1

t Σ)

×2ϕ(vt ;0,u−1
t σ2

x )× γx
(1+st)/2(1− γx)

(1−st)/2I{−1,1}(st)h(ut ;ν),

which yields the following proposition.

Proposition 3. Let us represent the random vector zt ∼ T P−SMN−RMEM as (9), the structural
TP-SMN-RMEM defined by Proposition 2 and the joint distribution of (zt ,vt ,wt ,ut) admits (11),
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thus following that,

(i) p(wt |zt ;θ) =

{
πγxt i f wt = γx

π(1−γx)t i f wt =−(1− γx),

(ii) f (vt |wt ,ut ,zt ;θ) =
ϕ(vt ; µwt ,σ2

wt
(ut))

Φ(τwt (ut))
I{vt}(0,∞),

(iii) f (vt |ut ,zt ;θ) = πγxt(ut)
ϕ(vt ; µγxt ,σ2

γxt(ut))

Φ(τγxt(ut))
I{vt}(0,∞)

+π(1−γx)t(ut)
ϕ(vt ; µ(1−γx)t ,σ

2
(1−γx)t

(ut))

Φ(τ−(1−γx)t(ut))
I{vt}(0,∞),

(iv) f (ut |wt ,zt ;θ) =
ϕm(zt ;µ,u−1

t Ωwt )Φ(τwt (ut))h(ut ;ν)
fSMSN(zt ;µ,Ωwt ,λwt ,ν)

,

(v) f (ut |zt ;θ) =
γxϕm(zt ;µ,u−1

t Ωγx)Φ(τγxt(ut))h(ut ;ν)
f (zt ;θ)

+
(1− γx)ϕm(zt ;µ,u−1

t Ω1−γx)Φ(τ−(1−γx)t(ut))h(ut ;ν)
f (zt ;θ)

,

with wt = γx,−(1− γx), for t = 1, . . . ,n, leading to

µwt =
σ2

x wtb⊤Σ−1(zt −µ)

1+σ2
x w2

t b⊤Σ−1b
, σ2

wt
(ut) =

u−1
t σ2

x

1+σ2
x w2

t b⊤Σ−1b
,τwt (ut) =

µwt

σwt (ut)
,

πγxt =
γx fSMSN(zt ;µ,Ωγx ,λγx ,ν)

f (zt ;θ)
,

π(1−γx)t =
(1− γx) fSMSN(zt ;µ,Ω1−γx ,−λ1−γx ,ν)

f (zt ;θ)
,

πγxt(ut) =
γxϕm(zt ;µ,u−1

t Ωγx)Φ(τγxt(ut))

f (zt |ut ,θ)
,

π(1−γx)t(ut) =
(1− γx)ϕm(zt ;µ,u−1

t Ω1−γx)Φ(τ−(1−γx)t(ut))

f (zt |ut ,θ)
,

f (zt |ut ,θ) = γxϕm(zt ;µ,u−1
t Ωγx)Φ(τγxt(ut))

+(1− γx)ϕm(zt ;µ,u−1
t Ω1−γx)Φ(τ−(1−γx)t(ut)).

4 Maximum likelihood estimation via the EM algorithm
The advantages in terms of efficiency and robustness of MLEs of model (4) based on the ECM technique
studied by Meng and Rubin (1993) are considered. We start by considering the hierarchical representation
(10) and the fact that

p(wt ;γx) = γx
(1+st )/2(1− γx)

(1−st )/2I{−1,1}(st).
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Denoting the estimate of θ at the k-th iteration by θ̂(k) and zc = {z,v,w,u} be the complete dataset of
model (4), where z = {z1, . . . ,zn}, v = {v1, . . . ,vn}, w = {w1, . . . ,wn}, and u = {u1, . . . ,un}. With κ(ut) = 1/ut
and using the equation given by (11), the log-likelihood function for θ based on the t-th complete data,
zct , is in the following form

ℓ(θ|zc) =
n

∑
t=1

ℓ(θ|zct) =
n

∑
t=1

(
ℓzt |vt ,wt ,ut + ℓvt |ut + ℓwt

)
,

where

ℓzt |vt ,wt ,ut =−1
2

log(|2πu−1
t Σ|)− ut

2
(zt −a)⊤Σ−1 (zt −a)

+ut(zt −a)⊤Σ−1bµx +uwvt(zt −a)⊤Σ−1b

−uwvtb⊤Σ−1bµx −
ut

2
b⊤Σ−1bµ2

x −
uw2v2

t

2
b⊤Σ−1b,

ℓvt |ut =−1
2

log(2πu−1
t σ2

x )−
ut

2
v2

t

σ2
x
,

ℓwt =
1
2
(1+ st)logγx +

1
2
(1− st)log(1− γx).

Obviously, from equation (8), we have that |Σ|= ϕ p
δ ϕ q−1

ξ (ϕξ +qϕe), and

Σ−1 =

[
Σ11 0
0 Σ22

]
(12)

in which Σ11 = 1
ϕδ

Ip and Σ22 = 1
ϕξ

Iq − ϕe
ϕξ (ϕξ+qϕe)

1q1q
⊤. The constants that are independent of θ in the

above expressions can be ignored. The EM algorithm is constructed as follows. Given the current value
θ̂(k) of θ, the E-step of the EM algorithm calculates the Q-function defined by Q(θ|θ̂(k)) = ∑n

t=1 Qt(θ|θ̂(k))

Qt(θ|θ̂(k)) =− p
2

logϕδ −
q−1

2
logϕξ −

1
2

log(ϕξ +qϕe),

− 1
2

û(k)t

[
1

ϕδ

p

∑
i=1

X2(i)
t +

1
ϕξ

q

∑
j=1

(Y ( j)
t −α)

2
− q2ϕe

ϕξ (ϕξ +qϕe)
(Ȳt −α)

2

]

+ û(k)t µx

[
p

ϕδ
X̄t +

qβ
(ϕξ +qϕe)

(Ȳt −α)

]
+ ûwv(k)t

[
p

ϕδ
X̄t +

qβ
(ϕξ +qϕe)

(Ȳt −α)

]
− ûwv(k)t µx

[
p

ϕδ
+

qβ 2

(ϕξ +qϕe)

]
− 1

2
û(k)t µ2

x

[
p

ϕδ
+

qβ 2

(ϕξ +qϕe)

]
− 1

2
ûw2v2

(k)

t

[
p

ϕδ
+

qβ 2

(ϕξ +qϕe)

]
− logσx −

1
2σ2

x
ûv2

(k)
t +

1
2
(1+ ŝ(k)t )logγx +

1
2
(1− ŝ(k)t )log(1− γx), (13)
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in which Yt = (Y(1)
t , . . . ,Y(q)

t )
⊤

, µy = (α +β µx)1q, β = β1q. Furthermore, to obtain the Q-function, we
first need to calculate the following conditional expectations, which must be evaluated at θ = θ̂(k).
E-step:

ŝ(k)t = E
θ̂(k) {st |Zt = zt} ,

û(k)t = E
θ̂(k) {Ut |Zt = zt} ,

ûv2
(k)
t = E

θ̂(k)

{
Utv2

t |Zt = zt
}
,

ûwv(k)t = E
θ̂(k) {Utwtvt |Zt = zt} ,

ûw2v2
(k)

t = E
θ̂(k)

{
Utw2

t v2
t |Zt = zt

}
,

where E
θ̂(k) means that the expectation is computed at θ = θ̂(k). The derivation of these moments will be

useful in the implementation of the EM algorithm.

Proposition 4. The structural TP-SMN-RMEM defined by Proposition 2 and the joint distribution of
(zt ,vt ,wt ,ut) admits (11), thus following that

(i) E{st |zt ;θ}= πγxt −π(1−γx)t ,

(ii) E{v2
t Ut |zt ;θ}= πγxt

{
χt(γx)µ2

γxt +ζt(γx)µγxtσγxt

fSMSN(zt ;µ,Ωγx ,λγx ,ν)
+σ2

γxt

}

+π(1−γx)t

{
χt(1− γx)µ2

(1−γx)t
+ζt(1− γx)µ(1−γx)tσ(1−γx)t

fSMSN(zt ;µ,Ω1−γx ,−λ1−γx ,ν)
+σ2

(1−γx)t

}
,

(iii) E{vtwtUt |zt ;θ}= γxπγxt

{
χt(γx)µγxt +ζt(γx)σγxt

fSMSN(zt ;µ,Ωγx ,λγx ,ν)

}
− (1− γx)π(1−γx)t

{χt(1− γx)µ(1−γx)t +ζt(1− γx)σ(1−γx)t

fSMSN(zt ;µ,Ω1−γx ,−λ1−γx ,ν)

}
,

(iv) E{v2
t w2

t Ut |zt ;θ}= γ2
x πγxt

{
χt(γx)µ2

γxt +ζt(γx)µγxtσγxt

fSMSN(zt ;µ,Ωγx ,λγx ,ν)
+σ2

γxt

}

+(1− γx)
2π(1−γx)t

{
χt(1− γx)µ2

(1−γx)t
+ζt(1− γx)µ(1−γx)tσ(1−γx)t

fSMSN(zt ;µ,Ω1−γx ,−λ1−γx ,ν)
+σ2

(1−γx)t

}
,

where t = 1, . . . ,n, st = sign(wt) ∈ {−1,1} and

χt(γx) =


fSN(zt ;µ,Ωγx ,λγx) if Ut

d
= 1,

2tm(zt ;µ,Ωγx ,ν) ν+m
ν+dγx

T (
√

ν+m+2
ν+dγx

Aγx ;ν +m+2), if Ut ∼ Γ(ν/2,ν/2),

2 fSL(zt ;µ,Ωγx ,ν) 2ν+m
dγx

P1(
m+2ν+2

2 ,
dγx

2 )

P1(
m+2ν

2 ,
dγx

2 )
E
(

Φ(S1/2
γx Aγx)

)
, if Ut ∼ Beta(ν ,1),

Also, for

h(ut ;ν1,ν2) =

{
ν2 ν1

1 1−ν1,

we have
χt(γx) = 2

{
ν1ν2ϕm(zt ;µ,ν−1

2 Ωγx)Φ(ν1/2
2 Aγx)+(1−ν1)ϕm(zt ;µ,Ωγx)Φ(Aγx)

}
,
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ζt(γx) =



ϕm(zt ;µ,Ωγx)ϕ(Aγx), if Ut
d
= 1,

σγxt
σx

Γ(m+ν+1
2 )

√
πΓ( ν+2

2 )
{ν +dzt (µ,Σ)}−

1
2 tm(zt ;µ,Σ,ν), if Ut ∼ Γ(ν/2,ν/2),

σγxt
σx

Γ(m+2ν+1
2 )√

2πΓ( 2ν+m
2 )

{ 2
dzt (µ,Σ)

} 1
2

×P1(
2ν+m+1

2 ,
dzt (µ,Σ)

2 )

P1(
2ν+m

2 ,
dzt (µ,Σ)

2 )
fSL(zt ;µ,Σ,ν) if Ut ∼ Beta(ν ,1).

Also, for

h(ut ;ν1,ν2) =

{
ν2 ν1

1 1−ν1

we have
ζt(γx) = ν1

√
ν2ϕm(zt ;µ,ν−1

2 Ωγx)ϕ(
√

ν2Aγx),

where

σ2
γxt =

σ2
x

1+σ2
x γ2

x b⊤Σ−1b
, dzt (µ,Σ) = (zt −µ)⊤Σ−1(zt −µ).

Furthermore, πγxt , µγxt are given by Proposition 3, and the distribution of the variable Ss is given above.
Also, note that we should use −λ1−γx wherever it is needed.

The M-step consists of maximization of Q(θ|θ̂(k)) with respect to θ. For this, we use the faster ex-
tension of the original EM, the ECME algorithm, by replacing the M-step with a sequence of conditional
maximization (CM) steps. CM-steps then conditionally maximize Q(θ|θ̂(k)) with respect to θ, obtaining
a new estimate θ̂(k+1), as follows:

CM-step Maximize Q(θ|θ̂(k)) with respect to θ. This is accomplished by the following steps.
CM-step.1: Update γ̂(k)x , σ̂2(k)

x , µ̂(k)
x by

γ̂(k)x =
1+̂̄s(k)

2
,

σ̂2(k+1)
x =

1
n

n

∑
t=1

ûv2
(k)
t ,

µ̂(k+1)
x =

∑n
t=1 ût X̄t −∑n

t=1 ûwvt

∑n
t=1 ût

,

µ̂(k+1)
y =

∑n
t=1 ûtȲt −∑n

t=1 ûwvt β̂ (k)

∑n
t=1 ût

,

where µy = α +β µx, ̂̄s(k) = ∑n
t=1 ŝ(k)t /n, X̄t = ∑p

i=1 X (i)
t /p, Ȳt = ∑q

i=1 Y ( j)
t /q,

CM-step.2: With fixed µ̂x = µ̂(k+1)
x , µ̂y = µ̂(k+1)

y

1. Update β̂ (k) by

β̂ (k+1) =
∑n

t=1 ûwv(k)t (Ȳt − µ̂(k+1)
y )

∑n
t=1 ûw2v2

(k)

t

.
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2. Update ϕ̂ (k)
δ by

ϕ̂ (k+1)
δ =

1
n

{
n

∑
t=1

1
p

û(k)t

p

∑
i=1

(X (i)
t − µ̂(k+1)

x )
2
−2

n

∑
t=1

ûwv(k)t (X̄t − µ̂(k+1)
x )

}

+
1
n

n

∑
t=1

ûw2v2
(k)

t

3. Update ϕ̂ (k)
ξ by

ϕ̂ (k+1)
ξ =

1
n(q−1)

{
n

∑
t=1

û(k)t

q

∑
j=1

(Y ( j)
t − µ̂(k+1)

y )
2
−q

n

∑
t=1

û(k)t (Ȳt − µ̂(k+1)
y )

2
}
.

4. Update ϕ̂ (k)
e by

ϕ̂ (k+1)
e =

1
n(q−1)

{
q

n

∑
t=1

û(k)t (Ȳt − µ̂(k+1)
y )

2
− 1

q

n

∑
t=1

û(k)t

q

∑
j=1

(Y ( j)
t − µ̂(k+1)

y )
2
}

+
1
n

n

∑
t=1

ûw2v2
(k)

t β̂ 2(k+1)− 2
n

n

∑
t=1

ûwv(k)t β̂ (k+1)(Ȳt − µ̂(k+1)
y ).

CM-step.3: Update α̂(k) by

α̂(k+1) = µ̂(k+1)
y − β̂ (k+1)µ̂(k+1)

x .

Remark 1. The iteration of the ECM algorithm is repeated until the difference between two successive
log-likelihood values, |ℓ(θ̂(k+1);z1, . . . ,zn)− ℓ(θ̂(k);z1, . . . ,zn)|, is sufficiently small, say 10−6. As initial
values for the algorithm, we can use the mean vector z̄ for µ, the sample variance S2

X = 1
n ∑n

t=1 S2
Xt

with

S2
Xt

= 1
p ∑p

i=1 (X
(i)
t − X̄t)

2
(according to the model given by (4)) for ū(σ2

x +ϕδ ) with ū = 1
n ∑n

i=1 ut . As for ϕδ ,
it can be set equal to some fraction of σ2

x ; in our subsequent numerical work, we have started the iterative
process with σ2

x = ϕδ . Similarly, the sample variance S2
Y = 1

n ∑n
t=1 S2

Yt
with S2

Yt
= 1

q ∑p
j=1 (Y

( j)
t − Ȳt)

2
for ūϕξ .

Regarding γ, an option would be to start from the sample skewness of the observed explanatory variables
X = (X1, . . . ,Xn)

⊤ with Xt = (X (1)
t , . . . ,X (p)

t )
⊤

, namely g1(X) = 1
n ∑n

t=1 g1(Xt), where g1(Xt) =
m3Xt
m2Xt

, with

mkXt =
1
p ∑p

i=1 (X
(i)
t − X̄t)

k
, and invert these values to obtain an initial choice of γx, In part (ii) Corollary

1 the Pearson measure of skewness was calculated for the TP-SMN family. .

4.1 Asymptotic covariance matrix of MLEs
According to Arellano-Valle et al. (2020) approach, the empirical information matrix can be approximated
as

Iemp(θ;z) =
n

∑
t=1

U(zt ;θ)U⊤(zt ;θ)−nŪ(z;θ)Ū⊤(z;θ),

where Ū(z;θ) = 1
n ∑n

t=1 U(zt ;θ) and U(zt ;θ) is the empirical scoring function for the subject t. The indi-
vidual score function can be determined as (Louis (1982))

U(zt ;θ) =
∂ log f (zt ;θ)

∂θ
= E

{
∂ℓ(θ;zct)

∂θ
|zt ;θ

}
,
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where zct = {zt ,wt ,vt ,ut}, is the complete data vector from the tth observation and ℓ(θ;zct) is the corre-
sponding contribution to the log-likelihood function.

Iemp(θ̂;z) =
n

∑
t=1

ÛtÛ⊤
t ,

where Ût =U(zt ; θ̂) = (Ût,α ,Ût,β ,Ût,µx ,Ût,σx ,Ût,γx ,Ût,ϕδ ,Ût,ϕξ ,Ût,ϕe)
⊤, with

Ût,α =
q

ϕ̂ξ +qϕ̂e

{
ût(Ȳt − µ̂y)− β̂ ûwvt

}
,

Ût,β =
q

ϕ̂ξ +qϕ̂e

{
(Ȳt − α̂)(ût µ̂x + ûwvt)− β̂ (ût µ̂2

x +2ûwvt µ̂x + ûw2v2t)
}
,

Ût,µx =
p

ϕ̂δ
{ût(X̄t − µ̂x)− ûwvt}+

qβ̂
ϕ̂ξ +qϕ̂e

{
ût(Ȳt − µ̂y)− β̂ ûwvt

}
,

Ût,σx =− 1
σ̂x

+
1

σ̂3
x

ûv2t ,

Ût,γx =
1
γ̂x
(

1+ ŝt

2
)− 1

1− γ̂x
(

1− ŝt

2
),

Ût,ϕδ =
p

2ϕ̂ 2
δ

{
ût

p

p

∑
i=1

(X (i)
t − µ̂x)

2 −2(X̄t − µ̂x)ûwvt + ûw2v2t − ϕ̂δ

}
,

Ût,ϕξ =
q

2(ϕ̂ξ +qϕ̂e)2

{
−q

ϕ̂e(2ϕ̂ξ +qϕ̂e)

ϕ̂ 2
ξ

(Ȳt − µ̂y)
2ût − β̂ (Ȳt − µ̂y)ûwvt + β̂ 2ûw2v2t

}

− q
2

(
ϕ̂ξ +(q−1)ϕ̂e

ϕ̂ξ (ϕ̂ξ +qϕ̂e)

)
+

ût

2ϕ̂ 2
ξ

q

∑
j=1

(Y ( j)
t − µ̂y)

2,

Ût,ϕe =
q2

2(ϕ̂ξ +qϕ̂e)2

{
(Ȳt − µ̂y)

2ût −2β̂ (Ȳt − µ̂y)ûwvt + β̂ 2ûw2v2t −
1
q
(ϕ̂ξ +qϕ̂e)

}
.

5 Simulation study
The simulation study is considered in this section. It is well known that misspecification of the model’s
distribution will lead to biases of parameter estimates. The main goal is to confirm the effectiveness and
precision of MLEs under TP-SMN distributions. We consider four skew distributions, including TP-N,
TP-t with ν = 4, TP-SL with ν = 2, and TP-CN with ν1 = 0.2,ν2 = 0.3, in RMEM with or without equation
error, respectively. Under the circumstances of no equation error, we denote the distributions TP-N, TP-
t, TP-SL and TP-CN by TP-N0, TP-t0, TP-SL0 and TP-CN0 respectively. To maintain the general and
consistent form of the estimators among different TP-SMN distributions, the degrees of freedom for the
TP-SMN model will not be estimated together with the parameters of interest. Hence, we selected some
heavy-tailed distributions with fixed degrees of freedom. In the application, to find the best distribution
for the data, the degrees of freedom for different distributions, chosen by the Schwarz (1978) information
criterion. As usual, we are interested in the regression parameters α and β in the simulations. We first
generate data from the model (4) with the number of replicated observations chosen as p = 4 and q = 3
under the TP-t distribution with ν = 4. Then, we use the EM algorithm to calculate the MLEs of θ
under the TP-N, TP-t, TP-SL and TP-CN distributions with or without equation error, respectively. We
used two indicators to evaluate estimates, including sample bias (BIAS) and standard deviation (SD).
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Other parameters of model (4) are set as: µx = 1.5,σx = 1,γx = 0.95,α = 2,β = 1,ϕδ = 1,ϕξ = 0.5. For
comparison, we set ϕe = 0.5,1, ϕe = 1.5 respectively, which shows that the degree of matching between
the true covariate and response tends from strong to weak. Based on 1000 simulations, the results are
reported in Table 1. As we expected, the BIAS, and the corresponding SD decrease when the sample
size increases from 50 to 100 in all scenarios, and the MLE under TP-t (ν = 4) distribution (the true
distribution) is the best estimator using any of the two indicators, which fully reflects the effectiveness
and accuracy of the ML estimates. Moreover, performance under the TP-CN and TP-t distributions
behaves better than those under the TP-N distribution, which may be attributed to their heavy-tailed
features. Thus, we encourage the use of the heavy-tailed model when the data show heavy-tailed features,
even if the proposed heavy-tailed distribution is not the true one.

Obviously, the estimates with equation error consistently perform better than the estimates without
equation error. Especially, when ϕe increases from 0.5 to 1.5, the SD ratios without equation error
and with equation error become clearly larger. It states that for the data with skewness or heavy-tailed
features, ignoring equation error will bring about a serious deviation for statistical inference. The equation
error plays an important role in expressing the uncertain relationship between the true covariates and
the response.

6 Application
We give an illustrative example using the CSFII data set. This data set has conducted 24-hour recall
measures, as well as three additional 24-hour recall phone interviews of 1827 women who were recorded
about their daily diet intake (for example, saturated fat, calories, vitamin, etc.). Carroll et al. (2006) have
indicated that saturated fat has a great relationship with the risk of breast cancer and other diseases,
but the statistical significance of saturated fat disappeared when adding caloric intake to the logistic
regression model. Therefore, it is necessary to reveal the inner relationship between saturated fat and
caloric intake. In this illustrative example, we take the calorie intake/5000 as x and the saturated fat
intake/100 as y (Carroll et al. (2006); Lin and Cao (2013)). Instead of x and y, the nutrition variables
X and Y are calculated using four 24-hour recalls and suppose that they follow the model (4) with
p = q = 4. For the purpose of verifying the existence of skewness and heavy tails in the latent covariate
x, Lin and Cao (2013) fit the data using normal RMEM without equation error. They showed that the
latent covariate is positively skewed and heavy-tailed. This indicates that a normal model may not offer
a good fit. The degrees of freedom for different distributions, chosen by the Schwarz (1978) information
criterion, are also reported in Table 2. Using the profile log-likelihood functions for the three models,
getting the highest values of the profile log-likelihood, the degrees of freedom are found as ν = 4.3 for
TP-t, ν = 1.3 for TP-SL, and ν1 = 0.29,ν2 = 0.22 for TP-CN. We now consider TP-SMN distributions for
xt and SMN distributions for measurement errors δt , ξt and equation error et in the RMEM, that is, the
TP-SMN-RMEM proposed in this paper. We calculate the MLEs of the parameter θ and their standard
errors (SE) and also the Akaike information criterion (AIC) (Akaike (1974)) values based on the RMEM
model in the above distributions. These estimates are displayed in Table 2. The AIC value under the
TP-t distribution is always the smallest, whether there is an equation error or skewness or not, and it
gets the smallest value under the TP-t0 distribution in all situations. Thus, TP-t-RMEM is more suitable
for these data. Note that as another potential competitor, AIC values based on the SMSN-RMEM model
have added in Table 2 (in parenthesis). Moreover, the heavy-tailed models show smaller SEs than the
normal model. It would be better consider skewness in the models for their smaller AIC values. The
practical significance of the parameter β can be described as the positive proportion of saturated fat in
calories. The skew parameter γx is positive, suggesting that these data are skewed to the right. The
values of ϕe seem very small and only slightly change between different models, indicating that there is
an inapparent random relationship between the intake of calories and saturated fats.
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Table 1: Performances of estimators under TPt-RMEM with or without equation error

Parameter n Estimator ϕe = 0.5 ϕe = 1 ϕe = 1.5
BIAS SD BIAS SD BIAS SD

α 50 T P−N -0.123 0.641 -0.108 0.781 -0.145 0.797
T P− t -0.052 0.390 -0.033 0.492 -0.054 0.501

T P−SL -0.072 0.483 -0.051 0.587 -0.074 0.598
T P−CN -0.069 0.472 -0.047 0.568 -0.073 0.595
T P−N0 -0.946 1.240 -1.997 2.011 -2.924 2.317
T P− t0 -0.796 0.542 -1.442 1.042 -1.857 1.545

T P−SL0 -0.803 0.649 -1.508 1.098 -2.152 1.618
T P−CN0 -0.801 0.631 -1.492 1.087 -2.138 1.609

100 T P−N -0.056 0.405 -0.061 0.512 -0.067 0.769
T P− t -0.020 0.254 -0.021 0.316 -0.028 0.531

T P−SL -0.031 0.297 -0.032 0.312 -0.043 0.552
T P−CN -0.029 0.289 -0.031 0.308 -0.042 0.548
T P−N0 -0.880 0.655 -1.884 1.231 -2.625 1.996
T P− t0 -0.795 0.382 -1.826 0.692 -1.136 1.379

T P−SL0 -0.827 0.448 -1.835 0.824 -2.021 1.408
T P−CN0 -0.820 0.439 -1.831 0.808 -2.018 1.402

β 50 T P−N 0.047 0.303 0.041 0.356 0.058 0.397
T P− t 0.026 0.196 0.019 0.221 0.037 0.267

T P−SL 0.034 0.207 0.029 0.268 0.041 0.289
T P−CN 0.032 0.201 0.026 0.259 0.039 0.281
T P−N0 0.488 0.607 0.996 0.927 1.017 1.128
T P− t0 0.395 0.211 0.884 0.513 0.998 0.885

T P−SL0 0.407 0.298 0.941 0.584 1.011 0.916
T P−CN0 0.405 0.281 0.937 0.571 1.009 0.903

100 T P−N 0.021 0.201 0.026 0.217 0.037 0.228
T P− t 0.010 0.131 0.009 0.152 0.011 0.173

T P−SL 0.014 0.142 0.013 0.167 0.018 0.189
T P−CN 0.013 0.136 0.012 0.161 0.017 0.181
T P−N0 0.428 0.317 0.976 0.627 1.010 0.638
T P− t0 0.315 0.182 0.824 0.313 0.971 0.585

T P−SL0 0.385 0.198 0.901 0.384 0.987 0.416
T P−CN0 0.379 0.192 0.899 0.380 0.979 0.4160
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Table 2: Parameter estimations for CSFII data
Models Degree AIC Parameter

µx α β γx σx ϕδ ϕξ ϕe

T P−N / -18965(-18842) 0.196 -0.060 0.957 0.793 0.017 0.011 0.014 0.0012
(0.007) (0.022) (0.067) (0.090) (0.002) (0.0002) (0.0003) (0.0006)

T P− t ν = 4 -21957(-21182) 0.200 -0.052 0.914 0.651 0.011 0.007 0.008 0.0003
(0.007) (0.014) (0.052) (0.085) (0.001) (0.0002) (0.0002) (0.0002)

T P−SL ν = 1.2 -21837.5(-21066) 0.201 -0.051 0.911 0.701 0.006 0.004 0.005 0.0002
(0.009) (0.016) (0.049) (0.063) (0.001) (0.001) (0.0001) (0.0001)

T P−CN ν1 = 0.4,ν2 = 0.2 -21591.5(-20954) 0.202 -0.049 0.896 0.672 0.007 0.005 0.006 0.0003
(0.008) (0.014) (0.043) (0.051) (0.001) (0.0001) (0.0001) (0.0001)

T P−N0 / -19010.5(-18996) 0.199 -0.067 0.974 0.768 0.018 0.011 0.014 /
(0.007) (0.024) (0.069) (0.082) (0.002) (0.0003) (0.0003)

T P− t0 ν = 4 -22041(-21887.5) 0.200 -0.059 0.934 0.642 0.012 0.008 0.009 /
(0.008) (0.013) (0.046) (0.078) (0.001) (0.0002) (0.0002)

T P−SL0 ν = 1.2 -21921.5(-21153) 0.201 -0.055 0.921 0.691 0.005 0.004 0.004 /
(0.009) (0.017) (0.036) (0.057) (0.001) (0.0001) (0.0002)

T P−CN0 ν1 = 0.4,ν2 = 0.2 -21880.5(-21497) 0.202 -0.051 0.901 0.613 0.008 0.006 0.006 /
(0.008) (0.012) (0.036) (0.037) (0.0007) (0.0002) (0.0002)

7 Conclusion

In this paper, we develop an RMEM in the TP-SMN distribution class, called TP-SMN-RMEM, which is
suitable for asymmetric, heavy-tailed, and multimodal data. Also, it includes many special cases, such as
nonreplicated MEM under SMN distributions (Lachos et al. (2011)), RMEM under normal distribution
(Lin et al. (2004)) or SMN distributions (Lin and Cao (2013)). Moreover, in contrast to similar models,
especially, considering SMSN-RMEM (proposed by Cao et al. (2018)), what our proposed model offers
exactly is that the SMSN and TP-SMN families have different properties (for instance, different tail
behavior). In addition, numerical stability might also be a property that could be used to motivate our
proposed model for the explanatory variable. This means that, estimating the skewness parameter in the
TP-SMN class of distributions is often easier, and more stable, than estimating the shape parameter in
the SMSN family (which controls the asymmetry, tails, location of the mode, and spread of the density).
We provide explicit expressions for both the EM-type iterative estimates and the corresponding standard
errors. Due to the hierarchical structure of the model, the features of skewness of both covariate and
response can be captured under these assumptions. The proposed TP-SMN-RMEM models can reduce the
negative impact of distribution misspecification and outliers to some extent. In biological, environmental,
chemical, medical and other research areas, measurement error, skewness, multimodality, and outliers
commonly exist in real data; thus, the robust TP-SMN-RMEM models would be a good choice to fit such
data.
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