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Abstract. We proposed and studied a new bivariate random sign transformation of nonnega-
tive bivariate integer-valued distributions. This transformation develops new bivariate integer-
valued distributions on Z2. We applied the new transformation to the bivariate Poisson and
the bivariate geometric distributions. As an illustration, we fitted a real-life data set developed
based on the results of the 2019 UEFA Europa League using the new distributions.
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1 Introduction
The development of nonnegative integer-valued bivariate distributions has received considerable
attention in the literature. For important results and reviews on this topic, we refer the reader
to Kocherlakota and Kocherlakota (1992), Johnson et al. (1997), Lai (2006) and Sarabia Alegría
and Gómez Déniz (2008). Some recent important results in this area include Odhah (2013),
Genest and Mesfioui (2014), Bulla et al. (2015), Omair et al. (2016) and Karlis and Mamode
Khan (2023).

Chesneau et al. (2018) noted that changes in intra-daily stock prices take both positive and
negative integer values and that the price change is therefore characterized by discrete positive
and negative jumps. This motivated Chesneau et al. (2018) to propose and study some bivariate
integer-valued distributions on Z2. Omair et al. (2022) proposed some bivariate integer-valued
distributions on Z2 and applied their models to fit the two real life data sets; the difference in
the number of casualties to the number of employees on duty on railroads and the difference in
the number of goals scored in the English Premier League in different years.

In this paper, we proposed and studied a new bivariate random sign transformation (BRST)
of nonnegative bivariate integer valued distributions. The BRST is an extension of the random
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sign transformation (RST) of Aly (2018). The BRST is also a generalization of the transforma-
tion used in Chesneau et al. (2018). We used the BRST to introduce and study new families of
bivariate integer-valued distributions on Z2. The first family is developed based on the bivariate
Poisson distribution (BPD). The second family is developed based on the bivariate geometric
distribution (BGD).

In Section 2, we review some important bivariate integer-valued distributions. In Sections 3,
we introduce and study three versions of the BRST. In Section 4, we apply the transformations
of Sections 3 to the BPD. In Section 5, we apply the transformations of Sections 3 to the BGD.
In Section 6, we report the results of Monte Carlo simulation studies conducted to evaluate the
estimators of the parameters of the models of Sections 4 and 5. In Section 7, we apply the
models of Sections 4 and 5 to a real life data set developed based on the results of the 2019
UEFA Europa League.

A random vector (or variable) will be denoted by RV. The probability mass function of
discrete RV will be abbreviated by pm f and the joint probability mass function of a discrete RV
will be abbreviated by jpm f . The univariate Bernoulli distribution with parameter θ will be
denoted by Ber(θ). The geometric distribution with pm f ,g(x) = (1−θ)xθ ,x = 0,1, . . . ,0 < θ < 1,
will be denoted by Geo(θ). The Poisson distribution with parameter λ > 0 will be denoted by
Poi(λ ).

2 Some bivariate integer-valued distributions
2.1 Some bivariate Bernoulli distributions
Definition 1. Assume that β = (β00,β01,β10,β11), where 0 ≤ βi j ≤ 1 and ∑∑

i, j=0,1
βi j = 1. The RV

(U1,U2) with jpm f ,
P(U1 = i,U2 = j) = βi j, 0 ≤ i, j ≤ 1 (1)

is said to have the Bivariate Bernoulli (BV Ber) distribution denoted by BV Ber(β ).

Lemma 1. Assume that U1 ∼ Ber(β11 +β10),V2 ∼ Ber( β11
β11+β10

) and V3 ∼ Ber( β01
1−β11−β10

) are inde-
pendent. Let

U2 =U1V2 +(1−U1)V3, (2)

then, (U1,U2) has the BV Ber(β ) distribution of (1).

Definition 2. The RV (U1,U2) with jpm f ,

g(u1,u2) = πu1π1−u1α(1−u1)(1−u2)+u1u2αu1(1−u2)+u2(1−u1), u1,u2 = 0,1 (3)

is said to have the two parameters BV Ber distribution denoted by BV Ber(π,α).

Note that the BV Ber(π,α) of (3) is the special case of (1) when β11 = απ,β01 = απ,β10 =
απ,β00 = απ. To generate (U1,U2) from the BV Ber(π,α) of (3), we independently generate
U1 ∼ Ber(π),V2 ∼ Ber(α) and V3 ∼ Ber(α) and use (2).

Note that if (U1,U2) ∼ BV Ber(π,α), then U1 ∼ Ber(π),U2 ∼ Ber(πα + πα),Cov(U1,U2) =
ππ (2α −1) and U1,U2 are independent if and only if α = 0.5.
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Definition 3. The RV (U1,U2) with jpm f ,

g(u1,u2) =
1
2

β 1−u1−u2+2u1u2β
u1+u2−2u1u2

, 0 ≤ β ≤ 1,u1,u2 = 0,1, (4)

is said to have the one-parameter BV Ber distribution denoted by BVBer(β ).

Note that BVBer(β ) is the special case of BV Ber(β ) when β00 = β11 =
1
2 β and β01 = β10 =

1
2 β .

Note also that if (U1,U2)∼ BV Ber(β ), then Ui ∼ Ber( 1
2), i = 1,2,Cov(U1,U2) =

2β−1
4 and U1,U2 are

independent if and only if β = 1
2 .

To generate one realization (U1,U2) from BV Ber(β ) of (4), we independently generate U1 ∼
Ber( 1

2),V2 ∼ Ber(β ) and V3 ∼ Ber(β ) and use (2).

2.2 The BPD
Assume that Wj ∼Poi(λ j), j = 1,2,3 are independent RV. It is well known that (X1 =W1+W3,X2 =
W2 +W3) has the bivariate Poisson distribution (BPD(λ )) with jpm f

p(s, t;λ ) = e−(λ1+λ2+λ3)
λ s

1
s!

λ t
2

t!

min(s,t)

∑
i=0

(
s
i

)(
t
i

)
i!
(

λ3

λ1λ2

)i

, s, t = 0,1,2, . . . . (5)

Note that
E(Xi) =Var(Xi) = λi +λ3 and Cov(X1,X2) = λ3. (6)

For a comprehensive treatment of the BPD, we refer to Kocherlakota and Kocherlakota (1992)
and Johnson et al. (1997). The jpm f of (5) can be computed by using the R function “pbivpois”
of Karlis and Ntzoufras (2005). Let (X1,i,X2,i), i = 1,2, . . . ,n be a random sample from (5). The
MLE of λ1,λ2 and λ3 can be obtained by using the R function “simple.bp” of Karlis and Ntzoufras
(2005). The method of moments estimators (MME) of λ1,λ2 and λ3 are given by

λ̃ j = X j − λ̃3, j = 1,2, (7)

and
λ̃3 =

1
n

n

∑
i=1

(
X1,i −X1

)(
X2,i −X2

)
. (8)

2.3 The BGD of Phatak and Sreehari
The RV (X1,X2) with jpm f ,

q(s, t;θ) =
(

s+ t
s

)
δ s

1δ t
2 (1−δ1 −δ2) , s, t = 0,1,2, . . . (9)

where 0 < δ1,δ2 < 1 and 0 < 1− δ1 − δ2 < 1, is said to follow the BGD of Phatak and Sreehari
(1981), denoted by BGD(δ ).

Note that for the BGD(δ ), the following results hold (see, Krishna and Pundir (2009) and
Hogg et al. (2005)):
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1. X1 ∼ Geo
(

1−δ1−δ2
1−δ2

)
and X2 ∼ Geo

(
1−δ1−δ2

1−δ1

)
.

2. Let (X1,i,X2,i), i = 1,2, . . . ,n be a random sample from (9).

(a) The MLE of δ1 and δ2 are given by

δ̂ j =
X j

1+X1 +X2
, j = 1,2, (10)

where X j =
1
n ∑n

i=1 X j,i, j = 1,2.

(b) Using the result that q(0,0;δ ) = 1− δ1 − δ2, the MME of δ1 and δ2 are obtained as
follows:

δ̃ j =
X j ×∑n

i=1 I(X1,i = 0,X2,i = 0)
n

, j = 1,2. (11)

3. We may generate a realization (X1,X2) from the BGD(δ ) as follows:

(a) Generate X2 from Geo(1− δ2
1−δ1

).
(b) Given that X2 = y, generate V1,V2, . . . ,Vy+1 independently from Geo(1−δ1) and set

X1 = ∑y+1
i=1 Vi.

3 The BRST
Definition 4. Assume that (U1,U2) has a BVBer distribution, that (X1,X2) is a nonnegative
integer-valued RV independent of (U1,U2) with jpm f , f (s, t). Let fi(·) be the marginal pm f of
Xi, i = 1,2. Then, the BRST of (X1,X2) is defined as

Zi = (2Ui −1)Xi, i = 1,2. (12)

3.1 BRST based on the BV Ber(β )

Assume that (U1,U2)∼ BVBer(β ) of (1). In this case, the jpm f of Z1 and Z2 is given as follows:

h(0,0) = f (0,0), (13)

h(s,0) =
{

(β11 +β10) f (s,0), s = 1,2, . . .
(β00 +β01) f (−s,0), s =−1,−2, . . .

(14)

h(0, t) =
{

(β11 +β01) f (0, t), t = 1,2, . . .
(β00 +β10) f (0,−t), t =−1,−2, . . .

(15)

and

h(s, t) = f (|s| , |t|)×


β00, s, t =−1,−2, . . .
β10, s = 1,2, . . . , t =−1,−2, . . .
β01, s =−1,−2, . . . , t = 1,2, . . .
β11, s, t = 1,2, . . . .

(16)
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For i = 1,2, the marginal pm f of Zi is given by

hi(s) =


(β11 +β10) fi(s), s = 1,2, . . .
fi(0), s = 0,
(β00 + I(i = 1)β01 + I(i = 2)β10) fi(−s), s =−1,−2, . . . .

(17)

Lemma 2. It holds that

E(Zn
1Zm

2 ) = E(Xn
1 Xm

2 )×


1, if m and n are even,
(2β11 +2β10 −1) , if m is even and n is odd,
(2β11 +2β01 −1) , if m is odd and n is even,
(1−2β10 −2β01) , if m and n are odd.

(18)

Proof. Note that (18) follows from the result that for m,n = 0,1,2, . . . , we have

Zn
1Zm

2 = Xn
1 Xm

2 ×


1, if m and n are even,
(2U1 −1) , if m is even and n is odd,
(2U2 −1) , if m is odd and n is even,
(2U1 −1)(2U2 −1) , if m and n are odd.

Corollary 1. By (18), we have

E(Zn
1) = E(Xn

1 )×
{

1, if n is even,
(2β11 +2β10 −1) , if n is odd, (19)

E(Zm
2 ) = E(Xm

2 )×
{

1, if m is even,
(2β11 +2β01 −1) , if m is odd, (20)

and
E(Z1Z2) = (1−2β10 −2β01)E(X1X2). (21)

Hence, by (19)-(21), for i = 1,2,
E(Z2

i ) = E(X2
i ),

E(Zi) = (2β11 +2I(i = 1)β10 +2I(i = 2)β01 −1)E(Xi), (22)

Var(Zi) =Var(Xi)+4(β11 + I(i = 1)β10 + I(i = 2)β01)

× (1−β11 − I(i = 1)β10 − I(i = 2)β01)(E(Xi))
2 (23)

and

Cov(Z1,Z2) =(1−2β10 −2β01)Cov(X1,X2)

+4E(X1)E(X2)(β11 − (β11 +β10)(β11 +β01)) . (24)

Corollary 2. In the special case when U1 and U2 are independent (i.e., when β11 = α1α2,β10 =
α1α2,β01 = α1α2 and β00 = α1α2 with 0 < α1,α2 < 1) (18)-(24) reduce to the corresponding
results of Chesneau et al. (2018).
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Let EN(W1,W2) be Shannon’s entropy (see Shannon (1951)) of the RV (W1,W2) and let EN(V )
be Shannon’s entropy of the RV V . Then, we have the following lemma.

Lemma 3. It holds that

EN(Z1,Z2) = EN(X1,X2)+EN(U1,U2){1− f1(0)− f2(0)+ f (0,0)}
+( f1(0)− f (0,0))EN(U2)+( f2(0)− f (0,0))EN(U1). (25)

Proof.

EN(Z1,Z2) =−
∞

∑
i=−∞

∞

∑
j=−∞

h(i, j) lnh(i, j) =
9

∑
r=1

Sr, (26)

where
S1 =− f (0,0) ln f (0,0), (27)

S2 =−
∞

∑
i=1

∞

∑
j=1

h(i, j) lnh(i, j), S3 =−
−∞

∑
i=−1

∞

∑
j=1

h(−i, j) lnh(−i, j),

S4 =−
∞

∑
i=1

−∞

∑
j=−1

h(i,− j) lnh(i,− j), S5 =−
−∞

∑
i=−1

−∞

∑
j=−1

h(−i,− j) lnh(−i,− j),

S6 =−
∞

∑
j=1

h(0, j) lnh(0, j), S7 =−
−∞

∑
j=−1

h(0,− j) lnh(0,− j),

S8 =−
∞

∑
i=1

h(i,0) lnh(i,0), and S9 =−
−∞

∑
j=−1

h(−i,0) lnh(−i,0).

For S2, we have

S2 =−β11 lnβ11

∞

∑
i=1

∞

∑
j=1

f (i, j)−β11

∞

∑
i=1

∞

∑
j=1

f (i, j) ln f (i, j) =−β11T1 lnβ11 +β11T2,

where
T1 = 1− f1(0)− f2(0)+ f (0,0) and T2 =−

∞

∑
i=1

∞

∑
j=1

f (i, j) ln f (i, j).

For S3, we have

S3 =−
−∞

∑
i=−1

∞

∑
j=1

β01 f (−i, j){lnβ01 + ln f (−i, j)}

=−β01 lnβ01

∞

∑
i=1

∞

∑
j=1

f (i, j)−β01

∞

∑
i=1

∞

∑
j=1

f (i, j) ln f (i, j)

=−β01 lnβ01T1 +β01T2.

Similarly,
S4 =−β10 lnβ10T1 +β10T2 and S5 =−β00 lnβ00T1 +β00T2.
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Hence,
5

∑
r=2

Sr = EN(U1,U2)T1 +T2. (28)

We can show that

T2 = EN(X1,X2)− f (0,0) ln f (0,0)+
∞

∑
i=0

[ f (0, i) ln f (0, i)+ f (i,0) ln f (i,0)]. (29)

For S6, we have

S6 =−
∞

∑
j=1

(β11 +β01) f (0, j){ln(β11 +β01)+ ln f (0, j))}

=−(β11 +β01) ln(β11 +β01)
∞

∑
j=1

f (0, j)− (β11 +β01)
∞

∑
j=1

f (0, j) ln f (0, j)

=−(β11 +β01) ln(β11 +β01)( f1(0)− f (0,0))+(β11 +β01) f (0,0) ln f (0,0)

− (β11 +β01)
∞

∑
i=0

f (0, i) ln f (0, i).

For S7, we have

S7 =− (β00 +β10) ln(β00 +β10)( f1(0)− f (0,0))+(β00 +β10) f (0,0) ln f (0,0)

− (β00 +β10)
∞

∑
i=0

f (0, i) ln f (0, i).

Hence
S6 +S7 =−

∞

∑
i=0

f (0, i) ln f (0, i)+( f1(0)− f (0,0))EN(U2)+ f (0,0) ln f (0,0). (30)

Similarly,

S8 +S9 =−
∞

∑
i=0

f (i,0) ln f (i,0)+( f2(0)− f (0,0))EN(U1)+ f (0,0) ln f (0,0). (31)

By (26)-(31), we obtain (25).

3.1.1 Maximum likelihood estimators (MLE)

Assume that θ is the unknown parameter vector in the jpm f of (X1,X2) and hence in the
jpm f of (Z1,Z2) . In what follows, the presence of θ will be made explicit in both f and h. Let
(Z1,i,Z2,i), i = 1,2, . . . ,n be a random sample from h(·, ·;θ) of (13)-(16). Define

n0 =
n

∑
i=1

I(Z1,i = 0,Z2,i = 0), n+,0 =
n

∑
i=1

I (Z1,i > 0,Z2,i = 0) , (32)
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n−,0 =
n

∑
i=1

I (Z1,i < 0,Z2,i = 0) , n0,+ =
n

∑
i=1

I (Z1,i = 0,Z2,i > 0) , (33)

n0,− =
n

∑
i=1

I (Z1,i = 0,Z2,i < 0) , n+,+ =
n

∑
i=1

I (Z1,i > 0,Z2,i > 0) , (34)

n−,+ =
n

∑
i=1

I (Z1,i < 0,Z2,i > 0) , n+,− =
n

∑
i=1

I (Z1,i > 0,Z2,i < 0) , (35)

and
n−,− =

n

∑
i=1

I (Z1,i < 0,Z2,i < 0) . (36)

We can show that
E(n0) = nP(Z1 = 0,Z2 = 0) = n f (0,0;θ), (37)

E (n+,0) = n(β11 +β10)( f2(0;θ)− f (0,0;θ)) , (38)

E (n−,0) = n(1−β11 −β10)( f2(0;θ)− f (0,0;θ)) , (39)

E (n0,+) = n(β11 +β01)( f1(0;θ)− f (0,0;θ)) , (40)

E (n0,−) = n(1−β11 −β01)( f1(0;θ)− f (0,0;θ)) , (41)

E (n+,+) = nβ11 (1− f1(0;θ)− f2(0;θ)+ f (0,0;θ)) , (42)

E (n−,+) = nβ01 (1− f1(0;θ)− f2(0;θ)+ f (0,0;θ)) , (43)

E (n+,−) = nβ10 (1− f1(0;θ)− f2(0;θ)+ f (0,0;θ)) , (44)

and
E (n−,−) = n(1−β11 −β10 −β01)(1− f1(0;θ)− f2(0;θ)+ f (0,0;θ)) . (45)

Lemma 4. Assume that T (X1,X2) is the MLE of θ based on a random sample from f (·, ·;θ),
and let IX1,X2(θ) be the corresponding Fisher Information Matrix. Let (Z1,i,Z2,i), i = 1,2, . . . ,n be
a random sample from h(·, ·;θ) and let n+,0, . . . ,n−,− be as in (32)-(36). Then, for the MLE of
θ ,β11,β10 and β01, we have

1.
θ̂ = T (|Z1|, |Z2|).

2. β̂11, β̂10 and β̂01 are obtained by maximizing

l1 =n+,0 ln(β11 +β10)+n−,0 ln(1−β11 −β10)+n0,+ ln(β11 +β01)

+n0,− ln(1−β11 −β01)+n+,+ lnβ11 +n−,+ lnβ01

+n+,− lnβ10 +n−,− ln(1−β11 −β10 −β01) (46)

subject to the constraints,

0 ≤ β11 ≤ 1, 0 ≤ β10 ≤ 1, 0 ≤ β01 ≤ 1, and 0 ≤ β11 +β10 +β01 ≤ 1.
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3.

√
n


β̂11 −β11

β̂10 −β10

β̂01 −β01

θ̂ −θ

 D−→ MV N(0,
[

∑−1
1 0
0 I−1

X1,X2
(θ)

]
, (47)

where

∑1 =

 σ1 σ12 σ13
σ12 σ2 σ23
σ13 σ23 σ3

 ,
σ23 =

1− f1(0;θ)− f2(0;θ)+ f (0,0;θ)
1−β11 −β10 −β01

,

σ1 =
f2(0;θ)− f (0,0;θ)

(β11 +β10)(1−β11 −β10)
+

f1(0;θ)− f (0,0;θ)
(β11 +β01)(1−β11 −β01)

+
(1−β10 −β01)σ23

β11
,

σ2 =
f2(0;θ)− f (0,0;θ)

(β11 +β10)(1−β11 −β10)
+

(1−β11 −β01)σ23

β10
,

σ3 =
f1(0;θ)− f (0,0;θ)

(β11 +β01)(1−β11 −β01)
+

(1−β11 −β10)σ23

β01
,

σ12 =
f2(0;θ)− f (0,0;θ)

(β11 +β10)(1−β11 −β10)
+σ23,

and
σ13 =

f1(0;θ)− f (0,0;θ)
(β11 +β01)(1−β11 −β01)

+σ23.

Proof. The log-likelihood function (Log-LF) of the sample is given by

l = l1 + l2, (48)

where l1 is as in (46) and

l2 =
n

∑
i=1

ln f (|z1,i| , |z2,i| ;θ). (49)

It is clear from (48),(46), and (49) that the MLE of θ is obtained by maximizing l2 and the
MLE of β11β10 and β01 are obtained by maximizing l1 subject to the constraints,

0 ≤ β11 ≤ 1, 0 ≤ β10 ≤ 1, 0 ≤ β01 ≤ 1, and 0 ≤ β11 +β10 +β01 ≤ 1.

We will use the R function “constrOptim” to obtain the MLE of β11β10 and β01. To obtain ∑1
of (47) we use (37)-(45) and the following results:

∂ 2l
∂β 2

11
=

∂ 2l1
∂β 2

11
=− n+,0

(β11 +β10)
2 −

n−,0

(1−β11 −β10)
2 −

n0,+

(β11 +β01)
2

− n0,−

(1−β11 −β01)
2 −

n+,+

β 2
11

− n−,−

(1−β11 −β10 −β01)
2 ,
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∂ 2l
∂β 2

10
=

∂ 2l1
∂β 2

10
=− n+,0

(β11 +β10)
2 −

n−,0

(1−β11 −β10)
2 −

n+,−

β 2
10

− n−,−

(1−β11 −β10 −β01)
2 ,

∂ 2l
∂β 2

01
=

∂ 2l1
∂β 2

01
=− n0,+

(β11 +β01)
2 −

n0,−

(1−β11 −β01)
2 −

n−,+

β 2
01

− n−,−

(1−β11 −β10 −β01)
2 ,

∂ 2l
∂β10∂β11

=
∂ 2l1

∂β10∂β11
=− n+,0

(β11 +β10)
2 −

n−,0

(1−β11 −β10)
2 −

n−,−

(1−β11 −β10 −β01)
2 ,

∂ 2l
∂β01∂β11

=
∂ 2l1

∂β01∂β11
=− n0,+

(β11 +β01)
2 −

n0,−

(1−β11 −β01)
2 −

n−,−

(1−β11 −β10 −β01)
2 ,

and
∂ l

∂β10∂β01
=

∂ l1
∂β10∂β01

=− n−,−

(1−β11 −β10 −β01)
2 .

3.1.2 Method of moments estimators (MME)

Lemma 5. Assume that T̃ (·, ·) is the MME of θ based on a random sample from f (·, ·;θ). Then,
for the MME of θ ,β11,β10 and β01 we have

θ̃ = T̃ (|Z1|, |Z2|), (50)

β̃10 =
1
4
{1+A1 −A2 −C} , (51)

β̃01 =
1
4
{1−A1 +A2 −C} , (52)

and
β̃11 =

1
4
{1+A1 +A2 +C} , (53)

where
A j =

∑n
i=1 Z j,i

∑n
i=1

∣∣Z j,i
∣∣ , j = 1,2, (54)

and
C =

∑n
i=1 Z1,iZ2,i

∑n
i=1 |Z1,iZ2,i|

. (55)

Proof. Note that β̃11, β̃10 and β̃01 are obtained as follows. We start by solving

1
n

n

∑
i=1

Z1,i = (2β11 +2β10 −1)
{

E(X1)
∣∣∣θ=θ̃

}
, (56)

1
n

n

∑
i=1

Z2,i = (2β11 +2β01 −1)
{

E(X2)
∣∣∣θ=θ̃

}
, (57)
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and
1
n

n

∑
i=1

Z1,iZ2,i = (1−2β01 −2β10)
{

E(X1X2)
∣∣∣θ=θ̃

}
. (58)

Note that
X1X2 = |Z1Z2| and E (X1X2) = E (|Z1Z2|) .

Hence, (58) can be replaced by

1
n

n

∑
i=1

Z1,iZ2,i = (1−2β01 −2β10)
1
n

n

∑
i=1

|Z1,iZ2,i| . (59)

We can show that (56), (57), and (59) are, respectively, equivalent to

A1 = 2β̃11 +2β̃10 −1, (60)

A2 = 2β̃11 +2β̃01 −1, (61)

and
C = 1−2β̃01 −2β̃10. (62)

By solving (60)-(62), we obtain (51)-(53).

Consider the special case when X1 and X2 are independent. In this case, the MME estimators
of β10,β01 and β11 are as given in (51)-(53) after replacing C of (55) with

C1 =
n∑n

i=1 Z1,iZ2,i

(∑n
i=1 |Z1,i|)(∑n

i=1 |Z2,i|)
.

3.2 BRST based on the BV Ber(π,α) distribution

Assume that (U1,U2) has the BV Ber(π,α) distribution of (3). Define (Z1,Z2) as in (12). Then,
the jpm f of Z1 and Z2 is given as follows:

h(0,0) = f (0,0), (63)

h(s,0) =
{

π f (s,0), s = 1,2, . . . ,
π f (−s,0), s =−1,−2, . . .

(64)

h(0, t) =
{

(απ +απ) f (0, t), t = 1,2, . . . ,
(απ +απ) f (0,−t), t =−1,−2, . . .

(65)

and

h(s, t) = f (|s| , |t|)×


πα , s, t =−1,−2, . . .
απ, s = 1,2, . . . , t =−1,−2, . . .
απ, s =−1,−2, . . . , t = 1,2, . . .
απ, s, t = 1,2, . . . .

(66)
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The marginal pm f ′s of Z1 and Z2 are given by

h1(s) =


π f1(s), s = 1,2, . . .
f1(0), s = 0,
π f1(−s), s =−1,−2, . . .

(67)

and

h2(t) =


(απ +απ) f2(t), t = 1,2, . . . ,
f2(0), t = 0,
(απ +απ) f2(−t), t =−1,−2, . . . .

(68)

Lemma 6. It holds that

E(Zn
1Zm

2 ) = E(Xn
1 Xm

2 )×


1, if m and n are even,
(2π −1) , if m is even and n is odd,
(2α −1)(2π −1) , if m is odd and n is even,
(2α −1) , if m and n are odd,

E(Zn
1) = E(Xn

1 )×
{

1, if n is even,
(2π −1) , if n is odd,

E(Zm
2 ) = E(Xm

2 )×
{

1, if m is even,
(2α −1)(2π −1) , if m is odd,

E(Z1) = (2π −1)E(X1),

E(Z2) = (2α −1)(2π −1)E(X2),

Var(Z1) =Var(X1)+4ππ (E(X1))
2 ,

Var(Z2) =Var(X2)+2(απ +απ)(E(X2))
2 ,

E(Z1Z2) = (2α −1)E(X1X2),

and
Cov(Z1,Z2) = (2α −1){Cov(X1,X2)+4ππE(X1)E(X2)} .

3.2.1 MLE estimators

Assume that (Z1,i,Z2,i), i = 1,2, . . . ,n is a random sample from h(·, ·;θ) of (63)-(66). Let l2 be as
in (49) and let n±,0,n±,−,n±,+ be as in (32)-(36) and

n±,· = n±,0 +n±,−+n±,+.

The Log-LF of the sample is given by

l3 = l2 + l4,

where

l4 =n+,· lnπ +n−,· lnπ +(n+,++n−,−) ln(α)+(n−,++n+,−) lnα
+n0,+ ln(απ +απ)+n0,− ln(απ +απ) .
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Lemma 7. Assume that T (·, ·) is the MLE of θ based on a random sample from f (·, ·;θ), and
let IX1,X2(θ) be the corresponding Fisher information Matrix. Let θ̂ , π̂ and α̂ be the MLE of θ ,π
and α. Then,
1.

θ̂ = T (|Z1|, |Z2|).

2. π̂ and α̂ are obtained by maximizing l4 subject to the constraints,

0 ≤ α ≤ 1 and 0 ≤ π ≤ 1.

3. As n −→ ∞,

√
n

 π̂ −π
α̂ −α
θ̂ −θ

 D−→ MV N(0,
[

∑−1
2 0

0 I−1
X1,X2

(θ)

]
,

where

∑2 =

[
σ∗

1 σ∗
12

σ∗
12 σ∗

2

]
,

σ∗
1 =

( f1(0;θ 1)− f (0,0;θ 1,θ 2))(2α −1)2

(απ +απ)(απ +απ)
+

1− f1(0;θ 1)

ππ
,

σ∗
2 =

( f1(0;θ 1)− f (0,0;θ 1,θ 2))(2π −1)2

(απ +απ)(απ +απ)
+

1− f1(0;θ 1)− f2(0;θ 2)+ f (0,0;θ 1,θ 2))

αα
,

and

σ∗
12 =

( f1(0;θ 1)− f (0,0;θ 1,θ 2))(2α −1)(2π −1)
(απ +απ)(απ +απ)

.

Proof. To obtain ∑2, we use (38)-(45), (69)-(71),

∂ 2l4
∂α∂π

= 2
{

n0,+

απ +απ
− n0,−

απ +απ

}
− (2α −1)(2π −1)

{
n0,+

(απ +απ)2 +
n0,−

(απ +απ)2

}
, (69)

∂ 2l4
∂π2 =−n+,·

π2 − n−,·

π2 − (2α −1)2

{
n0,+

(απ +απ)2 +
n0,−

(απ +απ)2

}
, (70)

and
∂ 2l4
∂α2 =−(2π −1)2

{
n0,+

(απ +απ)2 +
n0,−

(απ +απ)2

}
− n+,++n−,−

α2 − n−,++n+,−

α2 . (71)
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3.2.2 MME estimators

Lemma 8. Assume that T̃ (·, ·) is the MME of θ based on a random sample from f (·, ·;θ). For
the MME of θ ,π, and α, we have

θ̃ = T̃ (|Z1|, |Z2|),

π̃ =
∑n

i=1 Z1,i +∑n
i=1 |Z1,i|

2∑n
i=1 |Z1,i|

, (72)

and
α̃ =

1
2

{
(∑n

i=1 |Z1,i|)× (∑n
i=1 Z2,i)

(∑n
i=1 Z1,i)× (∑n

i=1 |Z2,i|)
+1
}
. (73)

Note that π̃ and α̃ are obtained by solving

n

∑
i=1

Z1,i = (2π −1)
n

∑
i=1

|Z1,i|

and
n

∑
i=1

Z2,i = (2α −1)(2π −1)
n

∑
i=1

|Z2,i| .

3.3 BRST based on BV Ber(β )

Assume that (U1,U2) has the BV Ber(β ) distribution of (4). Define (Z1,Z2) as in (12). Then, the
jpm f of Z1 and Z2 is given as follows:

h(0,0) = f (0,0), (74)

h(s,0) =
1
2
×
{

f (s,0), s = 1,2, . . .
f (−s,0), s =−1,−2, . . .

(75)

h(0, t) =
1
2
×
{

f (0, t), t = 1,2, . . .
f (0,−t), t =−1,−2, . . .

(76)

and

h(s, t) =
1
2

f (|s| , |t|)×


β , s, t =−1,−2, . . .
β , s = 1,2, . . . , t =−1,−2, . . .
β , s =−1,−2, . . . , t = 1,2, . . .
β , s, t = 1,2, . . . .

(77)

The marginal pm f ′s of Z1 and Z2 are given, for i = 1,2, by

hi(s) =


1
2 fi(s), s = 1,2, . . .
fi(0), s = 0,
1
2 fi(−s), s =−1,−2, . . . .

(78)
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Lemma 9. It holds that

E(Zn
1Zm

2 ) = E(Xn
1 Xm

2 )×


1, if m and n are even,
0, if m is even and n is odd,
0, if m is odd and n is even,
2β −1, if m and n are odd,

(79)

E(Zn
i ) = E(Xn

i )×
{

1, if n is even,
0, if n is odd, i = 1,2, (80)

Var(Zi) =Var(Xi)+(E(Xi))
2 , i = 1,2, (81)

and
Cov(Z1,Z2) = (2β −1){Cov(X1,X2)+E(X1)E(X2)} . (82)

Proof. Note that for i = 1,2 and r = 0,1,2, . . .,

Zr
i =

{
X r

i , if r is even,
(2Ui −1)X r

i , if r is odd.
Consequently, for m,n = 0,1,2, . . . ,

Zn
1Zm

2 = Xn
1 Xm

2 ×


1, if m and n are even,
(2U1 −1) , if m is even and n is odd,
(2U2 −1) , if m is odd and n is even,
(2U1 −1)(2U2 −1) , if m and n are odd.

Hence, we obtain (79) and (80). Using (79) and (80) ,we obtain
E(Z1) = E(Z2) = 0,

E(Z2
i ) = E(X2

i ), i = 1,2,

and
E(Z1Z2) = (2β −1)E(X1X2).

Hence, we obtain (81) and (82).

Remark 1. 1. For the MLE, we use the notation of Lemma 4. We can show that the log-LF
is given by

l =C+(n+,++n−,−) lnβ +(n+,−+n−,+) lnβ + l2,

where l2 is as in (49). Hence, the MLE of θ is as in Lemma 4 and the MLE of β is given
by

β̂ =
n+,++n−,−

n+,++n−,−+n+,−+n−,+
. (83)

In addition, as n −→ ∞,

√
n

(
β̂ −β
θ̂ −θ

)
D−→ MV N

(
0,daig

{
ββ , I−1

X1,X2
(θ)
})

.

2. The MME of θ is as in (50) and the MME of β is given by

β̂m =
1
2

{
∑Z1,iZ2,i

∑ |Z1,iZ2,i|
+1
}
. (84)
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4 BRST of the BPD
Assume that (U1,U2) has a BV Ber distribution, that (X1,X2) has the BPD of (5) and that (X1,X2)
is independent of (U1,U2). In the three models of this section, we may estimate λ1,λ2 and λ3
using the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using the R function “simple.bp” of Karlis
and Ntzoufras (2005) on (|Z1,i| , |Z2,i|), i = 1,2, . . . ,n.

2. The MME of (8) and (7) expressed in terms of (|Z1,i| , |Z2,i|), i = 1,2, . . . ,n.

4.1 Models based on the BV Ber(β ) distribution
Assume here that (U1,U2) has the BV Ber(β ) distribution of (1). In this case, the jpm f of Z1
and Z2 is given as in (13)-(16) after replacing f (·, ·) by p(·, ·;λ ) of (5). The marginal pm f ′s of
Z1 and Z2 are given as in (13) and (16) after replacing fi(·) by the pd f of Poi(λi +λ3), i = 1,2.
Using (22), (23), (24), and (6) we obtain

Cov(Z1,Z2) =(1−2β10 −2β01)λ3 +4(λ1 +λ3)(λ2 +λ3)

× (β11 − (β11 +β10)(β11 +β01)) ,

E(Zi) = (2β11 +2I(i = 1)β10 +2I(i = 2)β01 −1)(λ1I(i = 1)+λ2I(i = 2)+λ3) ,

and

Var(Zi) =(λ1I(i = 1)+λ2I(i = 2)+λ3)+4(β11 + I(i = 1)β10 + I(i = 2)β01)

× (1−β11 − I(i = 1)β10 − I(i = 2)β01)(λ1I(i = 1)+λ2I(i = 2)+λ3)
2 .

For the estimation of β11,β10, and β01, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using the R function “constrOptim”.

2. The MME of (51)-(53).

In each of Figures 1 and 2, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of β and λ .

4.2 Models based on the BV Ber(π,α) distribution
Assume that (U1,U2) has the BV Ber(π,α) distribution of (1). In this case, the jpm f of Z1 and
Z2 is given as in (63)-(66) after replacing f (·, ·) by p(·, ·;λ ) of (5). The marginal pm f ′s of Z1
and Z2 are given as in (67) and (68) after replacing fi(·) by the pd f of Poi(λi +λ3), i = 1,2. In
addition,

E(Z1) = (2π −1)(λ1 +λ3) ,

E(Z2) = (2α −1)(2π −1)(λ2 +λ3) ,

Var(Z1) = (λ1 +λ3)+4ππ (λ1 +λ3)
2 ,
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Figure 1: BRST of BPD with β = (0.4,0.22,0.17),λ = (9,7,2),ρ = 0.137, and n = 100.

Figure 2: BRST of BPD with β = (0.2,0.3,0.35) ,λ = (3,2,1),ρ =−0.22, and n = 100.
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Var(Z2) = (λ2 +λ3)+2(απ +απ)(λ2 +λ3)
2 ,

and
Cov(Z1,Z2) = λ3 +4ππ(2α −1)(λ1 +λ3)(λ2 +λ3) .

For the estimation of π and α, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 6 using the R function “constrOptim”.

2. The MME of (72)-(73).

In each of Figures 3 and 4, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of π,α and λ .

Figure 3: BRST of BPD with π = 0.6,α = 0.7,λ = (5,8,6),ρ = 0.379, and n = 100.

Figure 4: BRST of BPD with π = 0.5,α = 0.4,λ = (3,4,1),ρ =−0.178, and n = 100.
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4.3 Models based on the BV Ber(β ) distribution
Assume that (U1,U2) has the BV Ber(β ) distribution of (4). In this case, the jpm f of Z1 and Z2
is as given in (74)-(77) after replacing f (·, ·) by p(·, ·;λ ) of (5). The marginal pm f ′s of Z1 and
Z2 are given as in (78) after replacing fi(·) by the pd f of Poi(λi +λ3), i = 1,2. In addition,

E(Z1) = E(Z2) = 0,

Var(Zi) = (λi +λ3)+(λi +λ3)
2 , i = 1,2,

and
Cov(Z1,Z2) = (2β −1)(λ3 +(λ1 +λ3)(λ2 +λ3)) .

For the estimation of β , we may use the following alternatives:

1. The MLE estimator of (83).

2. The MME of (84).

In each of Figures 5 and 6, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of β and λ .

Figure 5: BRST of BPD with β = 0.75,λ = (4,7,8),ρ = 0.594, and n = 100.

5 BRST of the BGD
Assume that (U1,U2) has a BV B distribution, that (X1,X2) has the BGD with the jpm f of (9)
and that (X1,X2) is independent of (U1,U2). In the three models of this section, we may estimate
δ1 and δ2 using the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using (10).

2. The MME of (11) expressed in terms of (|Z1i| , |Z2i|), i = 1,2, . . . ,n.
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Figure 6: BRST of BPD with β = 0.4,λ = (3,2,1),ρ =−0.144, and n = 100.

5.1 Models based on the BV Ber(β ) distribution
Assume that (U1,U2) has the BV Ber(β ) distribution of (1). In this case, the jpm f of Z1 and Z2
is given as in (13)-(16) after replacing f (·, ·) by the jpm f of (9). The marginal pm f ′s of Z1 and
Z2 are given as in (13) and (16) after replacing f1(·) by the pd f of Geo

(
1−δ1−δ2

1−δ2

)
and f2(·) by

the pd f of Geo
(

1−δ1−δ2
1−δ1

)
. We can show that

E(Zi) = (2β11 +2I(i = 1)β10 +2I(i = 2)β01 −1)
δi

δ3
,

Var(Zi) =(
δi

1−δ1 −δ2
)(1+

δi

1−δ1 −δ2
)+4(β11 + I(i = 1)β10 + I(i = 2)β01)

× (1− (β11 + I(i = 1)β10 + I(i = 2)β01))

(
δi

1−δ1 −δ2

)2

,

and
Cov(Z1,Z2) =

δ1δ2

(1−δ1 −δ2)
2 {(1−2β10 −2β01)+4Cov(U1,U2)} ,

where
Cov(U1,U2) = β11 − (β11 +β10)(β11 +β01) .

For the estimation of β11,β10, and β01, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using the R function “constrOptim”.

2. The MME of (51)-(53).

In each of Figures 7 and 8, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BGD for selected values of β and θ .



On some bivariate integer-valued distributions on Z2 21

Figure 7: BRST of BGD with θ = (0.6,0.3,0.1),β = (0.4,0.22,0.17),ρ = 0.3993, and n = 100.

Figure 8: BRST of BGD with θ = (0.2,0.48,0.32),β = (0.2,0.3,0.35),ρ =−0.387, and n = 100.
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5.2 Models based on the BV Ber(π,α) distribution
Assume that (U1,U2) has the BV Ber(π,α) distribution of (1). In this case, the jpm f of Z1 and
Z2 is given as in (63)-(66) after replacing f (·, ·) by the jpm f of (9). The marginal pm f ′s of Z1

and Z2 are given as in (67) and (68) after replacing f1(·) by the pd f of Geo
(

1−δ1−δ2
1−δ2

)
and f2(·)

by the pd f of Geo
(

1−δ1−δ2
1−δ1

)
. We can show that

E(Z1) = (2π −1)
δ1

1−δ1 −δ2
,

E(Z2) = (2α −1)(2π −1)
δ2

1−δ1 −δ2
,

Var(Z1) = (
δ1

1−δ1 −δ2
)(1+

δ1

1−δ1 −δ2
)+4ππ

(
δ1

1−δ1 −δ2

)2

,

Var(Z2) = (
δ2

1−δ1 −δ2
)(1+

δ2

1−δ1 −δ2
)+2(απ +απ)

(
δ2

1−δ1 −δ2

)2

,

and

Cov(Z1,Z2) =

{
δ1δ2

(1−δ1 −δ2)
2 +4ππ(2α −1)

(
δ1δ2

(1−δ1 −δ2)
2

)}
.

For the estimation of π and α, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 6 using the R function “constrOptim”.

2. The MME of (72)-(73).

In each of Figures 9 and 10, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BGD for selected values of α,π and λ .

Figure 9: BRST of BGD with θ = (0.6,0.3,0.1),π = 0.6,α = 0.7,ρ = 0.4917, and n = 100.
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Figure 10: BRST of BGD with θ = (0.2,0.48,0.32),π = 0.7,α = 0.5,ρ =−0.24661, and n = 100.

5.3 Models based on the BV Ber(β ) distribution
Assume that (U1,U2) has the BV Ber(β ) distribution of (4). In this case, the jpm f of Z1 and Z2
is as given in (74)-(77) after replacing f (·, ·) by the jpm f of (9). The marginal pm f ′s of Z1 and
Z2 are given as in (78) after replacing f1(·) by the pd f of Geo

(
1−δ1−δ2

1−δ2

)
and f2(·) by the pd f of

Geo
(

1−δ1−δ2
1−δ1

)
. We can show that

E(Zi) = 0, i = 1,2,

Var(Zi) =
δi

1−δ1 −δ2

(
1+

2δi

1−δ1 −δ2

)
, i = 1,2,

and
Cov(Z1,Z2) =

2(2β −1)δ1δ2

(1−δ1 −δ2)
2 .

For the estimation of β , we may use the following alternatives:

1. The MLE estimator of (83).

2. The MME of (84).

In each of Figures 11 and 12, we give the scatter plot of a random sample of size n = 100
from the BRST of the BGD for selected values of β and θ .

6 Simulations
We have conducted 12 simulation studies to asses the performance of the MLE and the MME
estimators of the model parameters. In each simulation, we used 10,000 realizations of samples of
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Figure 11: BRST of BGD with θ = (0.6,0.3,0.1),β = 0.8,ρ = 0.837, and n = 100.

Figure 12: BRST of BGD with θ = (0.2,0.48,0.32),β = 0.4,ρ =−0.3335, and n = 100.

Table 1: BRST of BPD using BV Ber(β ).
λ1 = 3 λ2= 2 λ3= 1

MLE 2.998(0.199) 1.996(0.192) 1.002(0.182)
MME 3.005(0.228) 2.003(0.222) 0.995(0.214)

β11= 0.2 β10= 0.3 β01= 0.35
MLE 0.205(0.016) 0.283(0.021) 0.357(0.017)
MME 0.2(0.028) 0.306(0.033) 0.356(0.033)

Table 2: BRST of BPD using BV Ber(π,α).
λ1= 3 λ2= 2 λ3= 1 π = 0.7 α = 0.5

MLE 2.998(0.199) 1.996(0.192) 1.002(0.182) 0.685(0.023) 0.5(0.021)
MME 3.005(0.228) 2.003(0.222) 0.995(0.214) 0.7(0.029) 0.501(0.086)
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Table 3: BRST of BPD using BV Ber(β ).
λ1= 3 λ2= 2 λ3= 1 β = 0.4

MLE 2.998(0.199) 1.996(0.192) 1.002(0.182) 0.4(0.031)
MME 3.005(0.228) 2.003(0.222) 0.995(0.214) 0.4(0.041)

Table 4: BRST of BGD using BV Ber(β ).
p0= 0.2 p1= 0.48 p2= 0.32

MLE 0.2(0.013) 0.48(0.016) 0.321(0.015)
MME 0.2(0.013) 0.48(0.016) 0.321(0.015)

β11= 0.2 β10= 0.3 β01= 0.35
MLE 0.2(0.0111) 0.277(0.024) 0.35(0.011)
MME 0.201(0.056) 0.299(0.056) 0.349(0.059)

Table 5: BRST of BGD using BV Ber(π,α).
p0= 0.2 p1= 0.48 p2= 0.32 π = 0.7 α = 0.5

MLE 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.675(0.037) 0.502(0.026)
MME 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.699(0.05) 0.5(0.018)

Table 6: BRST of BGD using BV Ber(β ).
p0= 0.2 p1= 0.48 p2= 0.32 β = 0.4

MLE 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.4(0.051)
MME 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.4(0.086)

Table 7: BRST of independent Poisson RV using BVBer(β ).
λ1= 3 λ2= 2 β11= 0.2 β10= 0.3 β01= 0.35

MLE 2.999(0.099) 2(0.082) 0.201(0.008) 0.286(0.016) 0.351(0.008)
MME 2.999(0.099) 2.(0.082) 0.201(0.03) 0.3(0.033) 0.349(0.034)

Table 8: BRST of independent Poisson RV using BV Ber(π,α).
λ1= 3 λ2= 2 π = 0.7 α = 0.5

MLE 2.999(0.099) 2(0.082) 0.684(0.025) 0.502(0.017)
MME 2.999(0.099) 2.(0.082) 0.7(0.031) 0.502(0.092)

Table 9: BRST of independent Poisson RV using BVBer(β ).
λ1= 3 λ2= 2 β = 0.4

MLE 2.999(0.099) 2(0.082) 0.4(0.031)
MME 2.999(0.099) 2.(0.082) 0.4(0.040)
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Table 10: BRST of independent geometric RV using BV Ber(β ).
θ1= 0.5 θ2= 0.6 β11= 0.2 β10= 0.3 β01= 0.35

MLE 0.501(0.02) 0.601(0.022) 0.199(0.003) 0.284(0.022) 0.35(0.005)
MME 0.501(0.02) 0.601(0.022) 0.236(0.064) 0.263(0.066) 0.32(0.067)

Table 11: BRST of independent geometric RV using BV Ber(π,α).
θ1= 0.5 θ2= 0.6 π = 0.7 α = 0.5

MLE 0.501(0.02) 0.601(0.022) 0.683(0.033) 0.504(0.059)
MME 0.501(0.02) 0.601(0.022) 0.701(0.046) 0.5(0.01)

size 300 from the considered model. The mean (the standard deviation) of the 10,000 estimators
of each parameter are reported next in Tables 1 to 12.

The results of the Tables 1-12 suggest that both the MLE and the MME estimators perform
well in all the considered models. However, for most of the models, the MLE estimators have
smaller standard deviations than the corresponding MME estimators for all parameters.

7 Data analysis
The data of this example are based on the results of the 2019 UEFA Europa League. The 48
teams of this competition are divided into 12 groups of four teams each. Each team plays one
home match and one away match against the other three teams of its group. For each team,
we obtained one observation computed by taking the difference between a) the sum of scores of
its three home matches and b) the sum of scores of its three away matches. For example, the
observation of team Apoel of Group A (Apoel, Dudelange, Qarabağ and Sevilla) is obtained as
follows. The sum of Apoel’s three home scores ((3,4),(2,1), and (1,0)) is (6,5) and the sum of
Apoel’s three away scores ((2,0),(2,2), and (0,1)) is (4,3). Hence, the difference ((6,5)− (4,3))
is (2,2). The resulting bivariate data of 48 observations is as follows:

(0,-2) (0,-2) (0,4) (0,-4) (0,5) (0,7) (-1,0) (1,1) (1,-1) (-1,-1) (1,3) (-1,-3)
(-1,-3) (1,-4) (1,-4) (1,-5) (-1,-6) (2,0) (2,-1) (-2,1) (2,2) (2,-3) (-2,-3) (-2,-3)
(2,-4) (-2,4) (-2,-4) (-3,-1) (3,2) (3,3) (3,-3) (4,-1) (4,-2) (4,-2) (4,3) (4,-4)
(-4,-5) (5,-2) (-5,2) (6,-2) (6,-2) (6,4) (2,-3) (3,-5) (-1,3) (2,-2) (3,-5) (7,0).

To fit the above data we will explore the following bivariate BRST models:

1. P1 (BPD based on BBer(β )), P2 (BPD based on BBer(π,α)) and P3 (BPD based on
BBer(β )).

Table 12: BRST of independent geometric RV using BV Ber(β ).
θ1= 0.5 θ2= 0.6 β = 0.4

MLE 0.501(0.02) 0.601(0.022) 0.4(0.063)
MME 0.501(0.02) 0.601(0.022) 0.4(0.092)
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2. P4 (independent Poisson RV based on BBer(β )), P5 (independent Poisson RV based on
BBer(π,α)) and P6 (independent Poisson RV based on BBer(β )).

3. P7 (BGD based on BBer(β )), P8 (BGD based on BBer(π,α)) and P9 (BGD based on
BBer(β )).

4. P10 (independent Geometric RV based on BBer(β )), P11 (independent Geometric RV
based on BBer(π,α)) and P12 (independent Geometric RV based on BBer(β )).

In all of the above models, we obtained the MLE. For models P1, P4, and P10, β̂11 =

0.19800, β̂10 = 0.46751, and β̂01 = 0.113099. For models P2, P5, and P11, π̂ = 0.659675 and
α̂ = 0.418447. For models P3, P6, and P12, β̂ = 0.421. For models P1-P3, λ̂1 = 1.634857, λ̂2 =

2.572357, and λ̂3 = 0.7193102. For models P4-P6, λ̂1 = 2.35 and λ̂2 = 2.83. For models P7-P9,
θ̂1 = 0.38, θ̂2 = 0.457, and θ̂3 = 0.162. For models P10-P12, θ̂1 = 0.298 and θ̂2 = 0.261.

We divided Z2 into the nine mutually exclusive areas corresponding to n0,n0,∓,n∓,0,n±,−, and
n∓,+ of (32)-(36). The expected counts of each of these areas are computed using (37)-(45). For
example, the computations for model P1 are given next. Note that in this case,

f (0,0; λ̂ ) = 0.0072517, f1(0; λ̂ ) = 0.094973, and f2(0; λ̂ ) = 0.037192. (85)

Hence, by (37)-(45) and (85), we obtain the following Table 13 for Model P1.

Table 13: Observed and expected counts for Model P1.
P1 n0 n+,0 n−,0 n0,+ n0,− n+,+ n−,+ n+,− n−,−
Observed 0 2 1 3 4 7 4 18 9
Expected 0.348 0.946 0.492 1.31 2.901 8.326 4.742 19.31 9.6266

For each of the 12 models, we computed the Chi-square test statistic and the correspond-
ing P-value. The P-values for models P2, P3, and P6-P12 are all less than 0.05. The Chi-
square test statistics and the corresponding P-values of the remaining models are as follows: P1
(5.104,0.078), P4 (3.0386,0.386), and P5 (7.8953,0.096). It is clear from these results that model
P4 provides the best fit for the considered data.

8 Conclusions
We extended the RST of Aly (2018) to produce bivariate integer-valued random vectors on Z2.
The proposed Bivariate RST (BRST) is also an extension of the family of bivariate discrete
distributions on Z2 of Chesneau et al. (2018). We studied in details our proposed family and
considered, in particular, a number of new bivariate integer-valued distributions on Z2. The
proposed BRST can be applied to other bivariate nonnegative integer-valued random vectors to
produce new families of bivariate integer-valued random vectors on Z2.

As an illustration, we applied the proposed families to a real data set developed based on the
results of the 2019 UEFA Europa League. One of our proposed models provided an excellent fit
of this data.
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