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Abstract. This paper deals with the computation of Bayes factors (BFs) based on sequential
order statistics arising from homogeneous exponential populations. Explicit expressions for the
BFs are derived from the chi-square and the Poisson distribution functions. Some approximations
for the derived BFs are also proposed. A simulated data set is analyzed using the obtained results.
Open problems are also mentioned. The findings of this paper may be used for assessing evidence
in the available data in various fields such as reliability analyses of engineering systems and life
testing experiments.

Keywords: Bayes Factor; Exponential model; Hypotheses testing; Likelihood ratio; Sequential order statis-
tics

1 Introduction
Let X1, . . . ,Xn be independent and identically distributed (IID) random variables with a common
distribution function (DF), say F , and abbreviated by X1, . . . ,Xn

i.i.d.∼ F . Denote in magnitude
order of X1, . . . ,Xn by X1:n ≤ ·· · ≤ Xn:n, known as order statistics (OSs). The theory of OSs has
been widely used in literature. For example, in system reliability analyses, lifetimes of r-out-of-n
systems coincide to Xr:n, where X1, . . . ,Xn stand for component lifetimes. For more information,
see Barlow and Proschan (1981) and David and Nagaraja (2003) and references therein. There
are some generalizations of OSs such as fractional order statistics and generalized order statistics,
which are useful for providing a framework to unify similar results in the related literature; see
David and Nagaraja (2003) for more information. This paper deals with another unified concept,
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called the sequential order statistics (SOS), which has also a motivation in reliability analyses
of engineering systems. Specifically, when the component lifetimes are IID, the OSs are suitable
for describing r-out-of-n system lifetime. Here failing a component does not change the DFs of
lifetimes of surviving components. Motivated by Cramer and Kamps (1996), the failure of a
component may result in a higher load on the surviving components and hence causes the lifetime
distributions change. More precisely, suppose that Fj, for j = 1, . . . ,n, denotes the common DF
of the component lifetimes when n− j+ 1 components are working. The components begin to
work independently at time t = 0 with the common DF F1. When at time x1, the first component
failure occurs, the remaining n−1 components are working with the left truncated common DF
F2 at x1. This process continues up to rth component failure and hence the system fails. The
mentioned system is called sequential r-out-of-n system and its lifetime is then rth component
failure time, denoted by X⋆

(r). In the literature, (X⋆
(1), . . . ,X

⋆
(n)) is called SOSs. Statistical inferences

on the basis of SOSs have been studied in literature. For example, Bedbur (2010) obtained the
uniformly most powerful unbiased test under a conditional proportional hazard rates (CPHR)
model via a decision-theoretic approach. To describe the CPHR model, let F̄j(t) = F̄α j

0 (t), for
j = 1, . . . ,r, where F̄0(t) = 1−F0(t) is a given baseline DF. In this case, the hazard rate function
of the DF Fj, defined by h j(t) = f j(t)/F̄j(t) for t > 0 and j = 1, . . . ,n, is proportional to the
hazard rate function of the baseline DF F0, that is, h j(t) = α jh0(t). See also, Cramer and Kamps
(2001a,b), Beutner and Kamps (2009), Schenk et al. (2011), Burkschat and Navarro (2011),
Esmailian and Doostparast (2014), Hashempour and Doostparast (2017) and references therein.
In this paper, we consider that the DF F0(t) is the exponential distribution, denoted by Exp(σ),
that is,

F0(t;σ) = 1− exp
{
−
( t

σ

)}
, t > 0, σ > 0. (1)

The problem of hypotheses testing for exponential populations on the basis of s(≥ 2) multiple
and independent SOS samples under the CPHR model via a Bayesian approach is here studied.
The available data are denoted by

x =

 x11 . . . x1r
... . . . ...

xs1 . . . xsr

 , (2)

where the ith row of the matrix x in (2) stands for the SOS sample coming from the ith population
1 ≤ i ≤ s. In general, the likelihood function (LF) of the available data (2) reads

L(F [i]
j ;1 ≤ i ≤ s,1 ≤ j ≤ r) =

(
Γ(n+1)

Γ(n− r+1)

)s s

∏
i=1

r−1

∏
j=1

f [i]j (xi j)

 F̄ [i]
j (xi j)

F̄ [i]
j+1(xi j)

n− j
× f [i]r (xir)F̄

[i]
r (xir)

n−r, (3)

where F̄j
[i]
(x) = 1−F [i]

j (x), and F [i]
j calls for the common DF of the component lifetimes in the

ith sequential r-out-of-n sample. For more details, refer to Hashempour and Doostparast (2017).
Upon substituting (1) into (3), the LF (3) under the CPHR model reduces to

L(σ ,α;x) =
(

Γ(n+1)
Γ(n− r+1)

)s
(

s

∏
i=1

1
σi

)r

exp
{
−

s

∑
i=1

r

∑
j=1

(xi jm j

σi

)}
, (4)
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where σ= (σ1, . . . ,σr)
T , α= (α1, . . . ,αr)

T and m j = (n− j+1)α j −(n− j)α j+1 for j = 1, . . . ,r, with
convention αr+1 ≡ 0. For the special case σ1 = · · ·= σs = σ , the LF (4) simplifies to

L(σ ,α;x) =
(

Γ(n+1)
Γ(n− r+1)

)s
(

r

∏
j=1

α j

)s(
1
σ

)sr

exp
{
−
(

∑s
i=1 ∑r

j=1 xi jm j

σ

)}
, (5)

where σ is the common unknown mean of the baseline exponential DF in (1). In what follows,
the following lemma is utilized.

Lemma 1. Let X⋆
(1), . . . ,X

⋆
(n) be SOSs under the CPHR model with the baseline Exp(σ)-distribution.

Then, for r = 1, . . . ,n,

r

∑
j=1

(n− j+1)α jDi j =
r

∑
j=1

Xi jm j ∼ gamma(r,σ), (6)

where Di j = Xi j −Xi, j−1, for j = 1, . . . ,r, gamma(a,b) calls for the gamma distribution with density
f (x;a,b) = (Γ(a)ba)−1 xa−1 exp{−(x/b)}, for x > 0,

and Γ(a) =
∫ ∞

0
xa−1e−xdx is the complete gamma function.

For more details, refer to Hashempour and Doostparast (2017). To the best of the anthers
knowledge, Bayes factors (BFs) on the basis of SOSs has not been studied in the literature.
This paper deals with this problem by emphasizing on SOSs coming for exponential baseline
distribution under the CPHR model. So, the rest of this paper is organized as follow: In Section 2
, a review on BF and Bayes is given. A general form for BF is also derived for various hypotheses.
In Section 3, BFs for SOS coming from exponential populations under the CPHR are provided.
In Section 4, some approximations for the derived BF are proposed. These approximations
are useful for numerical evaluations of the BFs specially in big data analyses. In Section 5,
simulation studies based on SOS are provided. In Section 6, a real data set on failure times of
aircraft components for a life test is analyzed. Section 7 concludes.

2 A review on BF
The BF is a Bayesian approach alternative to the frequentest one for comparing multiple can-
didate models based on the available data, say x.

2.1 BF for simple hypothesis
Presence of nuisance parameters case the definition of the BF vague and complicated. Thus, in
what follows, we consider two cases. As mentioned by Cowles (2013), in the Bayesian analysis
when there are only two possible states of the world, M1 and M2 (or equivalently, two simple
hypotheses H1 and H2), one may interest to compare the models with the prior probability
π(M1)= 1−π(M2). Thus, the prior odd in favour of M1(or H1) is π(M1)/π(M2) (or π(H1)/π(H2)).
The posterior odd in favour of a model (or a hypothesis) is derived as the analogous ratio of
posterior probabilities: π(M1|x)/π(M2|x)(or π(H1|x)/π(H2|x)).
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The BF in favour of a model or hypothesis is the ratio of the posterior odds to the prior
odds. Thus, the BF in favour of M1 versus M2 is

BF =
π (M1|x)/π (M2|x)

π (M1)/π (M2)
. (7)

The BF (7) is a summary of the evidence provided by the data x in favour of one scientific theory,
represented by a statistical model, as opposed to another one. The BF usually is reported on
the log10 scale. A review paper by Kass and Raftery (2012) recommends the interpretations of
intervals of values of the BF as in Table 1.

Table 1: Interpretation of the strength of evidence
BF Evidence against H1

0 < BF ≤ 1
10 Strong against

1
10 < BF ≤ 1

3 Substantial against
1
3 < BF ≤ 1 Barely worth mentioning against
1 < BF ≤ 3 Barely worth mentioning
3 < BF ≤10 Substantial
10 < BF < ∞ Strong

Let f (y|Mi) , (i = 1,2) stand for the probability density function (PDF) of y given the ith
model. Then, the BF (7) for comparing to models M1 and M2, or equivalently for testing H1.
The model M1 is correct against the alternative H2. The model M2 is correct, is simplified as

BF =

f (y|M1)Π(M1)
f (y|M2)Π(M2)

Π(M1)
Π(M2)

=
f (y|M1)

f (y|M2)
. (8)

Equation (8) means that, the BF is the ratio of the likelihoods under the two simple hy-
potheses. In other words, it is the evidence contained in the data alone (uninfluenced by the
prior) in favour of one model over the other.
Example 1. On the basis of the observed data x in (2) and under the CPHR model, described in
the preceding section with the baseline Exp(σ)-distribution, consider the problem of hypotheses
testing

H1 : σ = σ1 v.s H2 : σ = σ2, (9)
where σ1 and σ2 are known positive constants and 0 < σ1 < σ2. Equations (5) and (8) get

BF =
L(σ1;x)
L(σ2;x)

=

(
σ2

σ1

)sr

exp

{
−
(

1
σ1

− 1
σ2

) s

∑
i=1

r

∑
j=1

xi jm j

}

=

(
σ2

σ1

)sr

exp

{
−
(

1
σ1

− 1
σ2

) r

∑
j=1

(n− j+1)α jDi j

}
. (10)

Note that, BF (10) in the simple versus simple case is the weight of evidence contained in the
data alone in favour of M1 versus M2. Thus, it ignores any information provided by the priors.
For more details, see Hashempour and Doostparast (2016, 2017).
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2.2 BF for composite hypotheses
In presence of unknown parameters, say θ , the BF given by (7) is not useful. For these cases, the
marginal likelihoods may be used. The numeric value of a marginal likelihood is determined by
the data and the entire Bayesian model (the form of the likelihood and all levels of priors). To do
this, suppose we wish to compare two families of models, denoted by M1 and M2, based on the
observed data y. The two families may have different likelihoods, different numbers of unknown
parameters, and so on. The BF in the general case is the ratio of the marginal likelihoods under
the two candidate families of models. Let θi (i = 1,2) denote parameters for the family Mi. The
marginal likelihoods under the family Mi is defined by

P(y|Mi) =
∫

P(y|θi)P(θi|Mi)dθi. (11)

Therefore, (8) motivates us to define the BF as

BF =
P(y|M1)

P(y|M2)
. (12)

The suggested BF (12) cannot be interpreted as the evidence in the data alone, since clearly
the priors affect each marginal likelihood and therefore the BF itself. For more details, refer to
Lewis and Raftery (1997) and Klauer et al. (2024).

3 SOS-based BF for exponential populations
In general, we are interested in comparing composite hypotheses H1 : σ ∈ Ω1 against the alter-
native H2 : σ ∈ Ω2 where Ω is the parameter space, Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = /0. Here “ /0”
stands for the empty set. Suppose that π(σ) is the prior density on the parameter space Ω. To
derive the BF on the basis of data x in (2), assume that the parameter vector α in (4) is known,
and it is suggested to consider the conjugate prior distribution for the scale parameters σ as
σ ∼ IG(a,b), which is the inverse gamma distribution with shape and scale parameters a and b,
respectively. The PDF σ is defined as follows:

π(σ) =
ba

Γ(a)
σ−(a+1) exp

{
−
(

b
σ

)}
, σ > 0, a > 0, b > 0. (13)

Equations (4) and (13) imply the posterior distribution of σ given x as

σ | x ∼ IG

(
ai + r,

r

∑
j=1

xi jm j +bi

)
, i = 1, . . . ,s. (14)

Remark 1. Under the squared error loss (SEL) function, that is, L(θ ,δ ) = (δ −θ)2, where θ
is the parameter of interest and δ is an estimate of θ , the Bayes estimate of the parameter θ is
the posterior mean. Thus, the Bayes estimate of σ is

σ̂B =
rσ̂ +b

a+ r−1
, (15)
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where σ̂ is the ML estimate of σ given by σ̂ =∑r
j=1 xi jm j/r =∑r

j=1(n− j+1)α jDi j/r. Note that the
Bayes estimate (15) is a weighted mean of the mean of the prior (13) and the ML estimate above;
that is, σ̂B = E (σ)w+(1−w) σ̂ , where w = (a−1)/(a+ r−1). For r = n and α1 = · · ·= αn = 1,
we have σ̂n =∑n

j=1 xi j/n and σ̂B = (∑n
j=1 xi j+b)/(a+n−1), which are, respectively, the well-known

ML and the Bayes estimates of the exponential parameters on the basis of a random sample of
size n; see, for example, Lawless (2003) and Hashempour and Doostparast (2016).

Proposition 1. Let π1(σ) and π2(σ) be two proper densities over Ω1 and Ω2, respectively. Then
the BF for H1 : σ ∈ Ω1 against H2 : σ ∈ Ω2 is

BF1,2 =
Γ(a2)Γ(a∗1)b

a1
1 (b∗2)

a∗2

Γ(a1)Γ(a∗2)b
a2
2 (b∗1)

a∗1

(
P(χ2a∗1 ∈ 2b∗1.Ω

[−1]
1 )

P(χ2a∗2 ∈ 2b∗2.Ω
[−1]
2 )

)(
P(χ2a2 ∈ 2b2.Ω

[−1]
2 )

P(χ2a1 ∈ 2b1.Ω
[−1]
1 )

)
, (16)

where 2b∗i .Ω
[−1]
i = {2b∗i θ−1 : θ ∈ Ω}, 2bi.Ω

[−1]
i = {2biθ−1 : θ ∈ Ω}, b∗i = bi +∑s

i=1 ∑r
j=1 xi jm j and

a∗i = ai + sr, for i = 1,2 and χν stands for the chi-square distribution with ν degrees of freedom.

Proof. From (12), (13), and (14), the BF of H1 against H2 is

BF1,2 =

( ∫
Ω1

L(σ |x)π1(σ)dσ∫
Ω2

L(σ |x)π2(σ)dσ

)( ∫
Ω2

π2(σ)dσ∫
Ω1

π1(σ)dσ

)

=

∫
Ω1

As
(

∏r
j=1 α j

)s (
∏s

i=1
1
σ
)r

exp
{
−∑s

i=1 ∑r
j=1

(
xi jm j

σi

)}
ba1

1
Γ(a1)

σ−(a1+1)

∫
Ω2

As
(

∏r
j=1 α j

)s (
∏s

i=1
1
σ
)r

exp
{
−∑s

i=1 ∑r
j=1

(
xi jm j

σi

)}
ba2

2
Γ(a2)

σ−(a2+1)

×
exp
{
−
(

b2
σ

)}
dσ

exp
{
−
(

b1
σ

)}
dσ

∫
Ω2

ba2
2

Γ(a2)
σ−(a2+1) exp

{
−
(

b2
σ

)}
dσ∫

Ω1

ba1
1

Γ(a1)
σ−(a1+1) exp

{
−
(

b1
σ

)}
dσ

=
Γ(a2)b

a1
1

Γ(a1)b
a2
2

∫
Ω1

σ−(a1+sr+1) exp{− 1
σ

(
∑s

i=1 ∑r
j=1 xi jm j +b1

)
}dσ∫

Ω2
σ−(a2+sr+1) exp{− 1

σ

(
∑s

i=1 ∑r
j=1 xi jm j +b2

)
}dσ

×

∫
Ω2

ba2
2

Γ(a2)
σ−(a2+1) exp

{
−
(

b2
σ

)}
dσ∫

Ω1

ba1
1

Γ(a1)
σ−(a1+1) exp

{
−
(

b1
σ

)}
dσ

=
Γ(a2)Γ(a1 + sr)ba1

1

(
b2 +∑s

i=1 ∑r
j=1 xi jm j

)a2+sr

Γ(a1)Γ(a2 + sr)ba2
2

(
b1 +∑s

i=1 ∑r
j=1 xi jm j

)a1+sr

P(χ2(a1+sr) ∈ Ω1)

P(χ2(a2+sr) ∈ Ω2)
× P(χ2a1 ∈ Ω2)

P(χ2a2 ∈ Ω1)

=
Γ(a2)Γ(a∗1)b

a1
1
(
b∗2
)a∗2

Γ(a1)Γ(a∗2)b
a2
2
(
b∗1
)a∗1

P(χ2a∗1 ∈ 2b∗1.Ω
[−1]
1 )

P(χ2a∗2 ∈ 2b∗2.Ω
[−1]
2 )

(P(χ2a2 ∈ 2b2.Ω
[−1]
2 )

P(χ2a1 ∈ 2b1.Ω
[−1]
1 )

)
.

= A

P(χ2a∗1 ∈ 2b∗1.Ω
[−1]
1 )

P(χ2a∗2 ∈ 2b∗2.Ω
[−1]
2 )

(P(χ2a2 ∈ 2b2.Ω
[−1]
2 )

P(χ2a1 ∈ 2b1.Ω
[−1]
1 )

)
,

where A =
Γ(a2)Γ(a∗1)b

a1
1 (b∗2)

a∗2

Γ(a1)Γ(a∗2)b
a2
2 (b∗1)

a∗1
.

In what follows, for the proper prior πi(σ)(i = 1,2) in Proposition 1, the truncated inverse
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gamma distributions to the parameter of spaces is assumed, that is,

πi(σ) =
bai

i
Γ(ai)

σ−(ai+1) exp
{
−
(

bi

σ

)}
× 1∫

Ωi
IG(ai,bi)dσ

, i = 1,2, σ ∈ Ωi.

A general form for the SOS-based BF in (16) is derived in terms of the chi-square DF. For
some common hypotheses, the proposed BF in (16) may be simplified. Similar to Lehmann and
Romano (2005, Ch 4.), the following hypotheses are considered and the corresponding simplified
BFs are displayed in Table 2:

H3 : σ ≤ σ0 v.s H4 : σ > σ0 (17)

H5 : σ ≥ σ0 v.s H6 : σ < σ0 (18)

H7 : σ = σ0 v.s H8 : σ > σ0 (19)

H9 : σ = σ0 v.s H10 : σ < σ0 (20)

H11 : σ1 ≤ σ ≤ σ2 v.s H12 : σ > σ2 or σ < σ1 (21)

H13 : σ ≥ σ2 or σ ≤ σ1 v.s H14 : σ1 < σ < σ2 (22)

H15 : σ = σ0 v.s H16 : σ ̸= σ0. (23)

Here, σ0, σ1, and σ2 are known positive constants and σ1 < σ2. In Table 2, we have

A =
(

Γ(a2)Γ(a∗1)b
a1
1 (b∗2)

a∗2
)
/
(

Γ(a1)Γ(a∗2)b
a2
2 (b∗1)

a∗1
)

and

B =
(

Γ(a2)(b∗2)
a∗2
)
/(Γ(a∗2)b

a2
2 ) ,

and Fχν stands for the DF of the chi-square distribution with ν degrees of freedom.

Lemma 2 (Johnson et al. (1994)). For t > 0,

Fχν (t) = 1− exp
{
− t

2

}ν−1

∑
i=0

( t
2)

i

i!
. (24)

Lemma 2 gives an alternative method for the expression of the BFs associated with the
hypotheses (17)-(23); see Table 3.

4 Approximate BF
The BFs in (16) and Table 2 involve the DF of the chi-square distribution. In this section, some
approximations for the BF defined by (16) are proposed, which may be useful for numerical
evaluations indeed in big data analyses. To do this, some lemmas are given. The first lemma is
based on the cumulative distribution function (CDF) of the standard normal CDF, that is,

Φ(x) =
∫ x

−∞

1√
2π

exp{−u2/2}du. (25)
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Table 2: BFs

BF3,4 = A

(
1−Fχ2a∗1

(
2b∗1
σ0

)

1−Fχ2a1
(

2b1
σ0

)

)(
Fχ2a2

(
2b2
σ0

)

Fχ2a∗2
(

2b∗2
σ0

)

)

BF5,6 = A

(
1−Fχ2a2

(
2b2
σ0

)

1−Fχ2a∗2
(

2b∗2
σ0

)

)(
Fχ2a∗1

(
2b∗1
σ0

)

Fχ2a1
(

2b1
σ0

)

)

BF7,8 =
B

σ sr
0

exp
{
− 1

σ0

(
∑s

i=1 ∑r
j=1 xi jm j

)}(Fχ2a2
(

2b2
σ0

)

Fχ2a∗2
(

2b∗2
σ0

)

)

BF9,10 =
B

σ sr
0

exp
{
− 1

σ0

(
∑s

i=1 ∑r
j=1 xi jm j

)}( 1−Fχ2a2
(

2b2
σ0

)

1−Fχ2a∗2
(

2b∗2
σ0

)

)

BF11,12 = A

(
Fχ2a∗1

(
2b∗1
σ1

)−Fχ2a∗1
(

2b∗1
σ2

)

Fχ2a1
(

2b1
σ1

)−Fχ2a1
(

2b1
σ2

)

)(
1−Fχ2a2

(
2b2
σ1

)+Fχ2a2
(

2b2
σ2

)

1−Fχ2a∗2
(

2b∗2
σ1

)+Fχ2a∗2
(

2b∗2
σ2

)

)

BF13,14 = A

(
1−Fχ2a∗1

(
2b∗1
σ1

)+Fχ2a∗1
(

2b∗1
σ2

)

1−Fχ2a1
(

2b1
σ1

)+Fχ2a1
(

2b1
σ2

)

)(
Fχ2a2

(
2b2
σ1

)−Fχ2a2
(

2b2
σ2

)

Fχ2a∗2
(

2b∗2
σ1

)−Fχ2a∗2
(

2b∗2
σ2

)

)
BF15,16 =

B
σ sr

0
exp
{
− 1

σ0

(
∑s

i=1 ∑r
j=1 xi jm j

)}
Lemma 3 (Johnson et al. (1994), page 426). As ν →+∞, we have for all t > 0

(I) Fχν (t)≈ Φ
(

t−ν√
2ν

)
,

(II) Fχν (t)≈ Φ
(√

2t −
√

2ν −1
)
.

In Lemma 3, the second approximation is better than the first one; see, for example, Johnson
et al. (1994). Meanwhile, we provide some approximations for BF with both of them. So, Lemma
3 gives

BF [I]
11,12 = A


Φ

(
2b∗1
σ1

−2a∗1√
4a∗1

)
−Φ

(
2b∗1
σ2

−2a∗1√
4a∗1

)

Φ
( 2b1

σ1
−2a1√
4a1

)
−Φ

( 2b1
σ2

−2a1√
4a1

)



1−Φ
( 2b2

σ1
−2a2√
4a2

)
+Φ

( 2b2
σ2

−2a2√
4a2

)
1−Φ

(
2b∗2
σ1

−2a∗2√
4a∗2

)
+Φ

(
2b∗2
σ2

−2a∗2√
4a∗2

)
 , (26)

BF [II]
11,12 = A

Φ
(√

4b∗1
σ1

−
√

4a∗1 −1
)
−Φ

(√
4b∗1
σ2

−
√

4a∗1 −1
)

Φ
(√

4b1
σ1

−
√

4a1 −1
)
−Φ

(√
4b1
σ2

−
√

4a1 −1
)


×

 1−Φ
(√

4b2
σ1

−
√

4a2 −1
)
+Φ

(√
4b2
σ2

−
√

4a2 −1
)

1−Φ
(√

4b∗2
σ1

−
√

4a∗2 −1
)
+Φ

(√
4b∗2
σ2

−
√

4a∗2 −1
)
 , (27)



Evaluation of evidences for dynamic systems based on Bayes factors with an application 49

Table 3: BFs based on Lemma 2
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The next lemma presents another approximation the CDF of the χν distribution base on an
infinite series. So, the CDF can be approximated by computing the summation for some finite
elements.

Lemma 4 (Johnson et al. (1994)). For x > 0,

Fχν (t) =
2(2t)

ν
2

Γ(ν
2 )

∞

∑
i=0

(−1)i t i

(ν +2i)2ii!
. (30)

The proposed BFs can be approximated by Lemma 4. For example,
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where N is a large number. Other approximations methods such as the Laplace method can
be used to approximate the F-distribution function; see, for example, Johnson et al. (1994). A
similar approach then is used to obtain an approximate BF based on SOSs.

5 Simulation studies
To examine the accuracy of the proposed BF, we performed a Monte Carlo simulation study
in the well-known statistical software R. For generating an SOS-sample from the exponential
population with σ = 1 under the CPHR model, an algorithm proposed by Cramer and Kamps
(1996) was performed. Here, we considered the hypothesis H11 : σ1 ≤ σ ≤ σ2 v.s H12 : σ >
σ2 or σ < σ1.

In Table 4 and Figure 1, the mean of the BFs based on 104 iterations for some selected
reduces of n and r are displayed. Appr 1 and Appr 2 stand for the approximations based on
Lemma (3) and (4), respectively.

Table 5 and Figure 2 represent the mean absolute among approximate and exact BFs.
Empirical results are

• increasing r more effective than increasing the copy s;

• approximations tend to the actual value as r/n increasing;

• Appr 1 dominates Appr 2;

• As n −→ ∞ and r/n goes to unify, the BF determines successfully the correct hypothesis.
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Table 4: Exact values and the corresponding approximates for the BF on the basis of a SOS-
sample from the exponential population under the CPHR model for some selected values of n
and r.

Exact Appr1 Appr2
3 1.9843 2.0852 2.6624
4 1.5754 1.6474 2.0768
5 1.2117 1.2621 1.5760
6 0.9860 1.0200 1.2533
7 0.6417 0.6731 0.8562
8 0.5612 0.5880 0.7453
9 0.3924 0.4116 0.5234

10 0.3719 0.4053 0.4997
11 0.2948 0.3078 0.3863
12 0.2341 0.2442 0.3054

(a) n = 20, r = 10

Exact Appr1 Appr2
3 1.3629 1.4212 1.7790
4 0.8295 0.8679 1.0981
5 0.6116 0.6389 0.8052
6 0.4283 0.4472 0.5619
7 0.2965 0.3103 0.3921
8 0.2345 0.2451 0.3080
9 0.1707 0.1780 0.2224

10 0.1221 0.1271 0.1579
11 0.1067 0.1109 0.1371
12 0.0791 0.0821 0.1010

(b) n = 20, r = 15

Exact Appr1 Appr2
3 2.5126 2.6767 3.5636
4 2.4532 2.5998 3.4039
5 2.3153 2.4416 3.1484
6 1.9026 2.0020 2.5661
7 1.7864 1.8722 2.3728
8 1.5225 1.5929 2.0113
9 1.3309 1.3891 1.7427

10 1.1886 1.2388 1.5503
11 0.9422 0.9870 1.2512
12 0.8756 0.9137 1.1486

(c) n = 20, r = 5

Exact Appr1 Appr2
3 2.4105 2.5696 3.4268
4 2.4171 2.5623 3.3578
5 2.1453 2.2650 2.9317
6 1.8881 1.9863 2.5442
7 1.7795 1.8660 2.3694
8 1.5757 1.6483 2.0789
9 1.3484 1.4092 1.7730

10 1.1382 1.1905 1.5024
11 1.0839 1.1308 1.4183
12 0.9575 0.9928 1.2282

(d) n = 10, r = 5

6 Aircraft data set

To demonstrate the results obtained in the preceding sections, we present an illustrative ex-
ample. Smith (2002) gave failure times of aircraft components for a life-test, originally due
to Mann and Fertig (1973). In the test, n = 13 components were placed in a Type-II cen-
sored life test in which the failure times of first 10 components to fail were observed (in hours)
as 0.22,0.50,0.88,1.00,1.32,1.33,1.54,1.76,2.50,3.00. Following Hashempour et al. (2019), it is
assumed that the lifetimes of the components are IID with an exponential distribution. We
considered two simple hypothesis tests based on the ML estimate of the σ in (15). Also, we ran
the SOS example for r = 3,4 and s = 3,4,5. The BF is approximated using (31) for the failure
time of aircraft components. The results on Table 6 show that as r or s increases, BF determines
the correct hypothesis more successfully.
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Table 5: Absolute errors of the approximations in Table 4 for the BF on the basis of a SOS-
sample from the exponential population under the CPHR model for some selected values of n
and r.

Appr1 Appr2
3 0.1025 0.6823
4 0.0743 0.5052
5 0.0586 0.3724
6 0.0496 0.2989
7 0.0327 0.2175
8 0.0279 0.1867
9 0.0203 0.1334

10 0.0147 0.1297
11 0.0141 0.0936
12 0.0109 0.0732

(a) n = 20, r = 10

Appr1 Appr2
3 0.0631 0.4197
4 0.0420 0.2717
5 0.0319 0.2030
6 0.0206 0.1361
7 0.0148 0.0978
8 0.0113 0.0754
9 0.0080 0.0534

10 0.0056 0.0373
11 0.0048 0.0318
12 0.0035 0.0231

(b) n = 20, r = 15

Appr1 Appr2
3 0.1661 1.0566
4 0.1484 0.9558
5 0.1280 0.8377
6 0.1010 0.6677
7 0.0873 0.5903
8 0.0727 0.4928
9 0.0632 0.4154

10 0.0565 0.3698
11 0.0493 0.3151
12 0.0436 0.2808

(c) n = 20, r = 5

Appr1 Appr2
3 0.1610 1.0216
4 0.1470 0.9456
5 0.1215 0.7911
6 0.0998 0.6605
7 0.0881 0.5940
8 0.0749 0.5070
9 0.0653 0.4283

10 0.0581 0.3716
11 0.0536 0.3444
12 0.0469 0.2913

(d) n = 10, r = 5

7 Conclusion
This paper focused on calculating BFs using sequential order statistics arising from homogeneous
exponential DFs. Also various approximations for these BFs were proposed. A simulation study
was conducted, and real data set was illustrated. The discoveries presented in this paper have
practical applications in evaluating evidence in various domains, including reliability analysis of
engineering systems and life testing experiments.
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Figure 1: BF and criteria.
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