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Abstract. In this paper, we introduce a novel distribution called the log transformed trans-
muted exponential (LTTE), which is derived by applying a log transformation to the transmuted
exponential distribution as the baseline model. We derive several key mathematical and statis-
tical properties of the LTTE distribution, including its moments, quantile function, skewness,
kurtosis, reliability function, and hazard rate, along with their respective shapes. The maximum
likelihood estimation method is used to estimate the parameters of the distribution. The practi-
cal applicability of the LTTE distribution is demonstrated by fitting it to three real-life datasets
related to cancer patients. The results indicate that the LTTE distribution offers a superior fit,
as evidenced by better values of AIC, BIC, and the Kolmogorov–Smirnov (KS) statistic, when
compared to other existing lifetime models.
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1 Introduction
It is an indisputable fact that the world is facing an epidemic of noncommunicable diseases,
with cancer cases continuing to grow at an alarming rate. Cancer is currently ranked as the
second leading cause of death, following cardiovascular diseases; see Jemal et al. (2008). The
GLOBOCAN 2018 report recorded 18.1 million new cancer cases and 9.6 million cancer-related
deaths globally. Emerging challenges such as rapid urbanization, population aging, unhealthy
lifestyles, and indoor and outdoor air pollution are contributing to the growing cancer burden
worldwide, particularly in middle and low-income countries, for example, India. According to
the WHO 2020 ranking on cancer burden, India ranks third in terms of new yearly cancer cases,
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following China and United States. The Indian Council of Medical Research’s National Cancer
Registry Program (ICMR-NCRP), an initiative by the government of India to estimate cancer
incidence in the country, reported 1.39 million new cancer cases in 2020 and 1.46 million in 2022.
The GLOBOCAN projection estimates that cancer cases in India will rise to 2.08 million by 2040,
representing a nearly 50% increase from 2020, Sathish Kumar et al. (2022). Among all the cancer
cases, Breast cancer is the leading cause of cancer incidence and mortality in India, accounting
for 13.5% of new cases and 10.6% of cancer-related deaths in 2020, Mehrotra and Yadav (2022).
Urban factors such as sedentary lifestyle, high obesity rates, delayed marriage, and childbirth,
and minimal breastfeeding contribute to its higher burden in urban areas. Another type of
hazardous cancer is bladder cancer which ranks as the ninth most common cancer, representing
3.9% of all cancer cases in India, Prakash et al. (2019). It is primarily linked to tobacco use
and exposure to industrial chemicals. Also, leukemia, a cancer of the blood-forming tissues,
compromises the body’s ability to fight infections. It accounts for 27% to 52% of childhood
cancers in males and 19% to 52% in females across various population-based registries, Bhutani
et al. (2004).

With such a large number of cancer cases being reported, there is a vast amount of data
available to perform statistical analyses to identify root causes and develop better treatments
for cancer patients. This large-scale data can be effectively analyzed with the help of statistical
models, which play a critical role in data interpretation. Statistical models help in quickly and
accurately gaining information about the population, often at a lower cost. Once a model is
identified, inferences can be drawn from the sample data to understand the broader population
trends. Therefore, the development and construction of suitable models are essential for solving
complex real-world problems, such as cancer data analysis. Many statisticians have developed
various models to address the data from different types of cancer, such as breast cancer, bladder
cancer, and leukemia, namely, Al-Kadim and Mahdi (2018) developed the exponentiated trans-
muted exponential model for analyzing breast cancer survival times, outperforming models like
log normal, log logistic, and exponential. Khan et al. (2013) proposed the transmuted inverse
Weibull model for bladder cancer data, showing strong performance compared to other models.
Kumar et al. (2015) introduced the DUS exponential model, which surpassed the transmuted
inverse Weibull and other models. Elbatal et al. (2013) developed the transmuted general-
ized linear exponential model for leukemia, enhancing the understanding of survival patterns in
leukemia patients.

In this discussion, we will explore some of the statistical models developed for analyzing
various types of cancer data and their applications. However, it is important to note that not
every model is always perfectly suited to real-life phenomena. This is because real-life situations
are dynamic and subject to change over time and several inherent factors may influence the
outcomes. These factors may include shifts in environmental conditions, advances in medical
treatments or changes in patient demographics and lifestyles. As a result, existing models may
not always capture the complexities or evolving trends inherent in these phenomena. Given these
challenges, there is an ongoing need to update or refine existing models to ensure they accurately
reflect current realities. In some cases, this might involve modifying an existing model to account
for new factors or changes in the underlying data. In other cases, the development of entirely
new models may be necessary to address the limitations of current models and improve their
predictive accuracy and applicability. With this motivation in mind, the present study aims to
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develop a new statistical model that can effectively analyze data from multiple types of cancer,
namely, breast cancer, bladder cancer, and leukemia. The goal is to create a model that not
only fits the unique characteristics of these cancer datasets but also outperforms many existing
models in terms of different model comparison criteria (e.g., AIC, BIC). By doing so, this study
seeks to contribute to more effective analyses of cancer data, leading to better insights into the
survival patterns, risk factors, and treatment outcomes for cancer patients across different types
of cancer.

In the field of statistical modeling, numerous methodologies have been proposed to create
new distributions by modifying or extending an existing baseline distribution. These approaches
often involve introducing additional parameters or applying transformations to the baseline
distribution, allowing for greater flexibility and adaptability to a wide range of real-world data
scenarios. The motivation behind these methods is to capture the complexities and nuances
of different types of data that cannot be adequately modeled by standard distributions alone.
Some common techniques include applying a parameterized transformation to the cumulative
distribution function (CDF) or probability density function (PDF) of the baseline distribution,
compounding it with another distribution or incorporating additional shape or scale parameters.
Few of them are discussed here; namely, Gupta et al. (1998) proposed a method for generalizing
the existing distribution by taking power of the CDF of any baseline probability distribution.
Verma et al. (2024) has also proposed a new distribution using the generalization technique.

In recent years, various transformation techniques have been introduced to develop new prob-
ability models. The quadratic rank transmutation map (QRTM) technique is widely used but
often increases computational complexity by adding parameters; see Shaw and Buckley (2009).
In contrast, the DUS transformation technique, introduced by Kumar et al. (2015), enhances
baseline distribution flexibility while remaining parsimonious in parameters, reducing estima-
tion complexity. Similarly, the log transformation technique proposed by Maurya et al. (2016)
combines parameter parsimony with increased distributional flexibility. These advancements
simplify parameter estimation while maintaining robust modeling capabilities.

The primary objective of this article is to introduce a novel probability distribution, termed
the log transformed transmuted exponential (LTTE) distribution. This new model is derived
using the log transformation technique, which has been recognized for its ability to enhance
the flexibility of baseline distributions while maintaining parameter parsimony. Specifically, the
LTTE distribution is developed by applying the log transformation to the transmuted exponen-
tial distribution, which serves as the baseline. The transmuted exponential distribution (see
Owoloko et al. (2015)) is a generalized version of the standard exponential distribution, intro-
duced to provide greater flexibility in modeling data. This distribution is obtained by applying
the QRTM to the exponential distribution, thereby adding a single parameter that enhances its
ability to capture diverse data behaviors. The CDF and PDF of this distribution are given by

G(x;λ ,α) = (1− e−λx)
(

1+αe−λx
)
,

and
g(x;λ ,α) = λe−λx

(
1−α +2αe−λx

)
, x ≥ 0,λ > 0, |α| ≤ 1,

respectively.
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Now by considering the above defined base line distributions, the logarithmic transformed
transmuted exponential distribution is given with the following CDF and PDF

F (x) = 1− 1
log2

log
[
2−

(
1− e−λx

)(
1+αe−λx

)]
,

and
f (x) =

λe−λx(1−α +2αe−λx)

[2− (1− e−λx)(1+αe−λx)] log2
, x ≥ 0,λ > 0, |α| ≤ 1,

respectively. The above proposed distribution is denoted by LTTE(x; α, λ ), where α and λ are

Figure 1: PDF of LTTE for some selected values of λ and α.

the shape and scale parameters, respectively. The shape of the PDF of the proposed distribution
is presented in Figure 1. By leveraging the properties of log transformation, the proposed
distribution aims to address limitations in existing models, offering improved adaptability to
various data sets and practical applications. This approach not only expands the family of
transmuted distributions but also contributes to the growing repertoire of tools for statistical
modeling and analysis.

The structure of the paper is as follows: Section 1 provides an introduction to the study.
Section 2, along with its subsections, explores the distributional properties of the proposed
model in detail. Section 3 discusses the parameter estimation using the maximum likelihood
estimation (MLE) technique. Section 4 presents simulation studies to evaluate the performance
of the estimators. In Section 5, the applicability of the proposed model is demonstrated using
three real datasets related to cancer patients. Finally, Section 6 concludes the paper with a
summary of the findings and key conclusions.

2 Distributional properties
A new probability distribution is characterized by considering its associated properties. Each
of the properties of PDF provides valuable insights and behavior of the random variable it
represents. Thus in this section, different distributional properties have been derived for the
proposed probability distribution.
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2.1 Survival characteristics
In this section, we will discuss the survival function and hazard rate of the proposed model.

• The survival function S(x) is the probability that an equipment/item survived at least time
x and it is defined as

S (x) = P(X > x) =
1

log2
log

[
2−

(
1− e−λx

)(
1+αe−λx

)]
.

Figure 2: Survival function of LTTE for varying values of α and λ .

• The hazard rate function h(x) is the instantaneous failure rate and it is defined by

h(x) =
λe−λx

(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]
log

[
2−

(
1− e−λx

)(
1+αe−λx

)] .
• The reverse hazard rate h̃(x) is obtained as

h̃(x) =

λe−λx(1−α+2αe−λx)
[2−(1−e−λx)(1+αe−λx)]log2

1− log[2−(1−e−λx)(1+αe−λx)]
log2

.

• The cumulative hazard function for LTTE is given by

H (x) =− logS (x) =− log

[
log

{
2−

(
1− e−λx

)(
1+αe−λx

)}
log2

]
.

The graphical representation of the S(x) and h(x) of the proposed model for varying values of
model parameters α and λ are presented in the Figures 2 and 3, respectively. We have examined
the nature of hazard for different combinations of model parameters α and λ , and from the graph,
it is evident that the model is of increasing hazard nature (except the parameters combination
where values of α and λ are very high and it showing nonmonotone hazard rate).
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Figure 3: Hazard rate of LTTE for varying values of α and λ .

2.2 Moments
Moments are fundamental properties of any distribution and are widely used to analyze its
features and characteristics. The rth moment about the origin for the proposed distribution is
expressed as

µ ′
r = E (X r) =

∫ ∞

0
xr λe−λx

(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]
log2

dx

=
λ

log2

∞

∑
i=0

(−1)i λ i

i!

∫ ∞

0
xi+r

(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]dx.

The respective moments are obtained by putting the values of r.

2.3 Quantile function
The pth quantile function denoted by Q(p) of LTTE (x; α, λ ) is obtained by solving

F [Q(p)] = p;

and after simplification, the expression for quantile function is given by

Q(p) =− 1
λ

log


√√√√{(

1−α
2α

)2

−
(

1−21−p

α

)}
−
(

1−α
2α

) . (1)

The respective values of quantile can be obtained by putting different values of p ∈ (0,1) in the
above expression for known values of model parameters.
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2.4 Skewness and kurtosis

The skewness and kurtosis are commonly employed to analyze the asymmetry and sharpness of
a probability distribution. However, their computation often relies on moments, which may not
exist for certain distributions. To address these limitations, alternative measures based on the
quantile function have been proposed. Notably, Bowley (1920) and Moors (1988) introduced
coefficients of skewness and kurtosis that depend on quantile. Bowley’s coefficient of skewness,
in particular, is defined as follows:

B =
Q(3/4)+Q(1/4)−2Q(1/2)

Q(3/4)−Q(1/4)
.

Similarly, the Moors’ coefficient of kurtosis is given by

M =
Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Using (1), the coefficients of skewness and kurtosis can be calculated.

2.5 Order statistics

The order statistics are very crucial in statistical analysis as in this case, the analysis of data is
performed in ascending or descending order. They are very helpful specially when dealing with
extreme observations (e.g., minimum, maximum). Here we will find the expressions of PDFs for
1st, rth, and nth order statistics when the sample follows the proposed distribution.

Suppose that X1,X2, . . . ,Xn are a random sample of size n from the proposed distribution and
their corresponding order statistics are X1:n,X2:n, . . .,Xn:n. The PDF of the rth order statistic Xr:n,
say fr:n(x), for the proposed distribution is given by

fr:n(x) =
n!

(r−1)!(n− r)! [log2]n

[
log

{
2

[2−
(
1− e−λx

)(
1+αe−λx

)
]

}]r−1

×λe−λx

[
log

{
2− (1− e−λx)(1+αe−λx)

}]n−r
(1−α +2αe−λx)[

2−
(
1− e−λx

)(
1+αe−λx

)] .

For r = 1 and r = n, it simplifies as, respectively,

f1:n (x) =
nλe−λx

[log2]n
[
log

{
2−

(
1− e−λx

)(
1+αe−λx

)}]n−1
(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]
and

fn:n (x) =
nλe−λx

[log2]n

[
log

{
2{

2−
(
1− e−λx

)(
1+αe−λx

)}}]n−1 (
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)] .
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2.6 Entropy
Entropy is a measure of the uncertainty or randomness associated with a random variable X
characterized by its PDF f (x). It is a significant concept with applications in various fields,
including communication, physics and reliability. Among the various measures of entropy, the
Rényi entropy, introduced by Rényi (1961), is one of the most widely used. For the proposed
distribution, the Rényi entropy is defined as

Rρ =
1

(1−ρ)
log

∫ +∞

−∞
[ f (x)]ρ dx ρ ̸= 1.

After simplification, the expression for Rρ for proposed distribution is given by

Rρ = (−1)i 1
1−ρ

log

{
∞

∑
i=0

∫ ∞

0

(xρ)i λ i+ρ

i!

[ (
1−α +2αe−λx

)
log2

{
2−

(
1− e−λx

)(
1+αe−λx

)}]ρ

dx

}
, ρ ̸= 1,

where ρ is the order of entropy.

2.7 Bonferroni and Lorenz curve
The Lorenz curve and the Bonferroni curve are graphical tools used to analyze inequality in
the distribution of resources, such as income or wealth. The Lorenz curve plots the cumulative
share of a quantity held by the bottom x% of the population, highlighting overall inequality,
with greater deviations from the diagonal line indicating higher inequality, for more detail see
Lorenz (1905). In contrast, the Bonferroni curve focuses on the proportional share of resources
held by the lower part of the population, making it more sensitive to changes at the lower
end of the distribution; see for more detail Bonferroni (1941). Both curves complement each
other in understanding inequality, with the Lorenz curve offering a broader perspective and the
Bonferroni curve providing detailed insights into the distribution among the less advantaged.
The expression for Lorenz and Bonferroni curves for the proposed distribution are given by

L(p) =
1
µ

∫ p

0
x f (x)dx =

λ
µ log2

∫ p

0
xe−λx

(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]dx

and
B(p) =

1
µ p

∫ p

0
x f (x)dx =

λ
µ p log2

∫ p

0
xe−λx

(
1−α +2αe−λx

)[
2−

(
1− e−λx

)(
1+αe−λx

)]dx,

respectively.

3 Parameter estimation
Parameter estimation is the process of determining the unknown parameters of a statistical
model based on observed data, with the goal of identifying the parameters that best describe
the underlying distribution or process. Common methods include MLE, which maximizes the
likelihood function; the method of moments, which matches sample moments with theoretical
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moments; least squares estimation, which minimizes the sum of squared differences between ob-
served and predicted values. The choice of method depends on the data, model and assumptions
about the distribution. Here, the MLE method has been considered for the estimation of the
model parameters.

3.1 MLE
Let X1,X2, . . . ,Xn be a random sample of size n from LT T E(x;α,λ ). Then the likelihood function
is given by

L(α,λ |x) = λ n

(log2)n e−λ ∑n
i=1 xi

∏n
i=1

(
1−α +2αe−λxi

)
∏n

i=1
[
2−

(
1− e−λxi

)(
1+αe−λxi

)] .
Therefore, the log-likelihood function after ignoring the constant term is given by

logL = n logλ −λ
n

∑
i=1

xi +
n

∑
i=1

log
(

1−α +2αe−λxi
)
−

n

∑
i=1

log
[
2−

(
1− e−λxi

)(
1+αe−λxi

)]
.

The maximum likelihood estimates (α̂, λ̂ ) of the parameter α, and λ can be obtained by differ-
entiating the above equation with respect to α and λ , respectively, and equating them to zero.
The following normal equations are obtained:

n

∑
i=1

2e−λxi −1(
1−α +2αe−λxi

) + n

∑
i=1

e−λxi
1− e−λxi[

2−
(
1− e−λxi

)(
1+αe−λxi

)] = 0 (2)

and
n
λ
−

n

∑
i=1

xi −2α
n

∑
i=1

xie−λxi(
1−α +2αe−λxi

) + n

∑
i=1

xie−λxi
(
1−α +2αe−λxi

)[
2−

(
1− e−λxi

)(
1+αe−λxi

)] = 0, (3)

respectively. The nonlinear equations (2) and (3) are challenging to solve analytically, as they
cannot be expressed in closed form. Various methods have been proposed to address such
equations, with the Newton–Raphson method being one of the most widely used techniques
for iterative and numerical solutions. Using the Newton–Raphson method, the estimates of α
and λ (denoted as α̂ and λ̂ , respectively) can be obtained by solving these nonlinear equations
iteratively.

3.2 Asymptotic confidence interval
Since the explicit distributions of the ML estimators are not available in closed form, thus
the asymptotic confidence intervals are constructed in this subsection; see Singh et al. (2014).
To achieve this, the Fisher information matrix is derived to facilitate the computation of the
asymptotic confidence intervals for the parameters α and λ . The resulting expressions for the
Fisher information matrix are provided as follows:

I(α,λ ) = E

− δ 2LogL
δα2 − δ 2LogL

δαδλ

− δ 2LogL
δλδα − δ 2LogL

δλ 2

 .



66 Md. Tahir, S. K. Singh and Abhimanyu S. Yadav

All the above derivatives are evaluated at (α̂, λ̂ ). The asymptotic variance-covariance matrix of
the maximum likelihood estimators is obtained by inverting the Fisher information matrix. The
diagonal elements of I−1(α,λ ) provide the asymptotic variances of α and λ . Using large sample
theory, a two-sided 100(1−β )% asymptotic confidence intervals for the parameters α and λ are
constructed as

α̂ ∓Zβ/2

√
v̂ar(α),

and
λ̂ ∓Zβ/2

√
v̂ar(λ ),

respectively, where Zβ/2 is the tabulated value of standard normal distribution at β/2% level
of significance. The width of a confidence interval reflects its precision, with narrower intervals
indicating more precise estimates. The average width is the mean of all interval widths computed
across simulations. Coverage probability measures how often the intervals contain the true
parameter value, indicating their reliability. Ideally, intervals should have a small width for
precision and a coverage probability close to the nominal level (1−β ) for accuracy.

3.3 MLE of survival function and hazard function
If α̂ and λ̂ are the maximum likelihood estimates of the parameters α and λ , respectively, then
by the invariance property of likelihood estimators, the estimates of the survival function and
the hazard function for any mission time t > 0 can also be obtained. According to this property,
the survival function S(t) and the hazard function h(t), which are functions of α and λ , can be
estimated by substituting their maximum likelihood estimates into the respective expressions.
Thus, the estimated survival function and the estimated hazard function are given by

Ŝ (x) =
1

log2
log

[
2−

(
1− e−λ̂x

)(
1+ α̂e−λ̂x

)]
,

and

ĥ(x) =
λ̂e−λ̂x

(
1− α̂ +2α̂e−λ̂x

)
[
2−

(
1− e−λ̂x

)(
1+ α̂e−λ̂x

)]
log

[
2−

(
1− e−λ̂x

)(
1+ α̂e−λ̂x

)] ,
respectively. These estimates provide practical insights into the reliability and risk associated
with different mission times.

4 Simulation study
In this section, a Monte Carlo simulation is conducted to evaluate the performance of the pro-
posed point estimators and interval estimates of the parameters. The simulation examines the
behavior of the estimators under varying sample sizes and varying model parameter values.
Specifically, the sample sizes considered are n = 30,60,90,120,150, and the parameter combi-
nations include (α = 0.1,λ = 0.9), (α = 0.2,λ = 0.8), (α = 0.06,λ = 0.7) and (α = 0.1,λ = 1.0).
These parameter settings are chosen to cover a wide range of scenarios for assessing the per-
formance of the estimators. The performance of the point estimators is assessed based on their
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mean square errors (MSEs), while interval estimators are evaluated using average width (AW)
and coverage probability (CP). 95% asymptotic confidence intervals for the parameters are
constructed for the same variation, and their corresponding AWs and CPs are also reported.
All computations are carried out using the open-source statistical R Software (2024) ensuring
transparency and reproducibility of the study. Each combination of sample size and parameter
values is examined through 10,000 replications and the results-comprising average estimates
(AE), biases and MSEs which are summarized in tabular form (Table 1). The simulation results
indicate that the MSEs of the estimators decreases to zero as the sample size n increases, accom-
panied by a reduction in the widths of the confidence intervals. This behavior demonstrates that
the estimators become more precise and their estimated values converge to the true parameter
values as the sample size grows. Furthermore, the negligible bias observed across all scenarios
supports the conclusion that the proposed estimators are asymptotically unbiased.

Table 2 presents the computed estimates of the survival and hazard functions for varying
values of model parameters, demonstrating how the reliability and risk change across different
parameters and mission time scenarios.

Table 1: AE, bias, and MSEs along with AW and CPs for the parameters for varying values of α and λ with
different sample sizes n.

n
α = 0.1 λ = 0.9

AE Bias MSE AW CP AE Bias MSE AW CP
30 -0.0395 -0.1395 0.2692 1.9696 0.8745 0.9852 0.0852 0.0859 1.0690 0.9151
60 0.0450 -0.0550 0.1650 1.5552 0.8680 0.9324 0.0324 0.0449 0.8076 0.9021
90 0.0785 -0.0215 0.1271 1.3574 0.8737 0.9141 0.0141 0.0337 0.6932 0.8939
120 0.0940 -0.0060 0.1077 1.2173 0.8740 0.9061 0.0061 0.0275 0.6169 0.8953
150 0.1037 0.0037 0.0951 1.1213 0.8788 0.9012 0.0012 0.0237 0.5656 0.8959

n α = 0.2 λ = 0.8
30 0.0223 -0.1777 0.2758 1.9693 0.8742 0.8980 0.0980 0.0787 0.9997 0.9105
60 0.1140 -0.0860 0.1653 1.5746 0.8686 0.8449 0.0449 0.0404 0.7644 0.8993
90 0.1565 -0.0435 0.1289 1.3731 0.8681 0.8235 0.0235 0.0305 0.6562 0.8868
120 0.1745 -0.0255 0.1077 1.2537 0.8693 0.8147 0.0147 0.0246 0.5941 0.8878
150 0.1888 -0.0112 0.0960 1.1569 0.8696 0.8080 0.0080 0.0213 0.5455 0.8832

n α = 0.06 λ = 0.7
30 -0.0663 -0.1263 0.2673 1.9719 0.8718 0.7597 0.0597 0.0490 0.8160 0.9177
60 0.0143 -0.0457 0.1652 1.5440 0.8680 0.7211 0.0211 0.0259 0.6121 0.9037
90 0.0464 -0.0136 0.1276 1.3383 0.8760 0.7078 0.0078 0.0195 0.5221 0.8965
120 0.0593 -0.0007 0.1070 1.2025 0.8770 0.7027 0.0027 0.0158 0.4653 0.8987
150 0.0667 0.0067 0.0933 1.1075 0.8849 0.6997 -0.0003 0.0134 0.4263 0.9020

n α = 0.01 λ = 1.0
30 -0.0995 -0.1095 0.2661 1.9585 0.8708 1.0740 0.0740 0.0935 1.1327 0.9200
60 -0.0250 -0.0350 0.1658 1.5259 0.8687 1.0238 0.0238 0.0499 0.8453 0.9073
90 0.0030 -0.0070 0.1263 1.3209 0.8781 1.0074 0.0074 0.0373 0.7199 0.9027
120 0.0150 0.0050 0.1066 1.1766 0.8832 1.0008 0.0008 0.0305 0.6363 0.9033
150 0.0195 0.0095 0.0909 1.0781 0.8929 0.9982 -0.0018 0.0254 0.5802 0.9106
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Table 2: Estimate of the reliability and hazard functions for varying values of t for different sample sizes n and
model parameters α and λ .

n t
α = 0.1,λ = 0.9 α = 0.2,λ = 0.8 α = 0.06,λ = 0.7 α = 0.1,λ = 1.0

R̂(t) ĥ(t) R̂(t) ĥ(t) R̂(t) ĥ(t) R̂(t) ĥ(t)
30

1.00

0.4705 0.8723 0.4925 0.8068 0.5754 0.6357 0.4280 0.9858
60 0.4708 0.8384 0.4918 0.7775 0.5734 0.6155 0.4292 0.9451
90 0.4698 0.8278 0.4904 0.7689 0.5715 0.6099 0.4286 0.9319
120 0.4690 0.8230 0.4893 0.7650 0.5703 0.6074 0.4280 0.9257
150 0.4684 0.8200 0.4884 0.7627 0.5694 0.6060 0.4276 0.9218
30

1.25

0.3796 0.9037 0.4039 0.8331 0.4913 0.6605 0.3361 1.0200
60 0.3817 0.8641 0.4051 0.7980 0.4913 0.6356 0.3390 0.9734
90 0.3816 0.8509 0.4045 0.7867 0.4901 0.6279 0.3393 0.9574
120 0.3813 0.8446 0.4038 0.7812 0.4893 0.6243 0.3392 0.9498
150 0.3810 0.8406 0.4033 0.7779 0.4887 0.6221 0.3391 0.9448
30

1.50

0.3047 0.9280 0.3298 0.8537 0.4175 0.6812 0.2628 1.0455
60 0.3080 0.8845 0.3323 0.8142 0.4191 0.6527 0.2664 0.9950
90 0.3086 0.8693 0.3324 0.8008 0.4187 0.6433 0.2673 0.9771
120 0.3086 0.8621 0.3322 0.7941 0.4183 0.6389 0.2675 0.9685
150 0.3086 0.8574 0.3320 0.7899 0.4180 0.6361 0.2676 0.9629
30

1.75

0.2439 0.9465 0.2686 0.8695 0.3536 0.6983 0.2049 1.0640
60 0.2476 0.9004 0.2718 0.8269 0.3563 0.6672 0.2086 1.0112
90 0.2486 0.8838 0.2725 0.8119 0.3565 0.6565 0.2098 0.9920
120 0.2489 0.8759 0.2726 0.8042 0.3564 0.6514 0.2102 0.9828
150 0.2491 0.8707 0.2726 0.7994 0.3563 0.6482 0.2105 0.9766

5 Real data applications

In this section, three real datasets related to different types of cancer patients have been utilized
to illustrate the practical applicability of the proposed log transformed transmuted exponential
distribution (LTTED). The first step involved evaluating whether the selected cancer datasets
were appropriate for modeling with the proposed distribution. This suitability assessment was
carried out by comparing the performance of the LTTE model with some other widely used life-
time distributions. The comparisons were made using well-established model selection criteria,
including the Akaike information criterion (AIC), the Bayesian information icriterion (BIC),
the KS statistic and the corresponding p-value obtained from the KS test. The performance
of the proposed LTTE model was compared against four competing lifetime distributions: the
transmuted exponential distribution (TED), the exponentiated exponential distribution (EED),
the Weibull distribution (WD), and the log-exponential distribution (LED). These distributions
were chosen due to their popularity and applicability in modeling lifetime data. The model
comparison was based on specific criteria: lower values of AIC, BIC, and KS statistic indicated
a better fit to the data, while higher p-values from the KS test suggested greater conformity of
the data sets to the theoretical distribution. In general, a model demonstrating smaller AIC,
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BIC, and KS values alongside a larger p-value was considered the most suitable. To provide a
clear understanding, the PDFs of the competing models are detailed below:

• Exponential distribution (see Owoloko et al. (2015)) with PDF

f (x,λ ,α) = λe−λx
(

1−α +2αe−λx
)
, x ≥ 0,α,λ > 0.

• Exponentiated exponential distribution with PDF

f (x,λ ,α) = αλe−λx
(

1− e−λx
)α−1

, x ≥ 0,α,λ > 0.

• Weibull distribution with PDF

f (x,α,λ ) = αλ (λx)α−1 e−(λx)α
, x ≥ 0,α,λ > 0.

• Log exponential distribution (Maurya et al. (2016)) with PDF

f (x,λ ) =
λe−λx(

1+ e−λx
)

log2
, x ≥ 0,λ > 0.

5.1 Data set-I: Breast cancer data
The first dataset represents the survival times of 121 patients diagnosed with breast cancer,
collected from a large hospital over the period 1929 to 1938 and is mentioned in Lee (1992).
This dataset has been previously analyzed and discussed in studies by Al-Kadim and Mahdi
(2018). The dataset is as follows:
0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4,
14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0,
21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0,
37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0,
45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0,
96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0

The total time on test (TTT) plot for the considered real dataset is presented in Figure 4.
The plot indicates that the data exhibits an increasing hazard rate, which aligns with the hazard
rate of the proposed model, making it potentially suitable for modeling such data. Al-Kadim
and Mahdi (2018) introduced the exponentiated transmuted exponential (ETE) distribution
to analyze this dataset and demonstrated that ETE outperformed three other lifetime models
namely lognormal (LN), log-logistic (LL) and exponential distribution (ED) based on its lower
AIC (1169.63) and BIC (1178.02). In this study, we further compare the proposed LTTE model
with above mentioned four other competing models and observed that the proposed LTTE model
exhibits the lowest AIC, BIC, and KS statistic values among the fitted models, including the
ETE model, see Table 3. This strongly suggests that the LTTE model provides the best fit for
this dataset and can be considered the most appropriate model for analyzing the survival times
of breast cancer patients in this context.



70 Md. Tahir, S. K. Singh and Abhimanyu S. Yadav

Figure 4: TTT plot of breast cancer dataset.

5.2 Data set-II: Bladder cancer data

The second dataset represents the remission times of 128 bladder cancer patients, extracted from
Lee and Wang (2003) and is given by
0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.8,2 0.51, 2.54, 3.70,
5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34„14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69

The TTT plot of the considered dataset (Figure 5) shows that the data is of nonmonotone
hazard nature even though from Table 3, it can be seen that our proposed model fits the data
very well. Khan et al. (2013) analyzed this dataset using the transmuted inverse Weibull (TIW)
distribution, comparing it with the transmuted inverse Rayleigh (TIR), transmuted inverted
exponential (TIE), and inverse Weibull (IW) distributions. Based on AIC, BIC, and KS values,
they concluded that the TIW distribution provided the best fit. Kumar et al. (2015) proposed the
DUS exponential distribution and demonstrated that it outperformed the TIW model, achieving
lower AIC (834.044) and BIC (836.896) values. In this study, we extend the comparison to
include the proposed LTTE distribution. Table 3 shows that the LTTE model achieves the
lowest AIC and BIC values among all the models considered by Khan et al. (2013) and Kumar
et al. (2015), establishing it as the best fit for this dataset.
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Table 3: The values of the negative of log-likelihood − logL, AIC, BIC, and KS value along with p-values for
all the considered data sets.

Data set-I: Breast Cancer Data
Models − logL AIC BIC KS p-value
LTTED 578.943 1161.885 1167.477 0.054 0.866
TED 578.978 1161.955 1167.547 0.068 0.638
EED 580.094 1164.187 1169.779 0.080 0.414
WD 579.024 1162.047 1167.639 0.060 0.779
LED 582.319 1166.639 1169.435 0.103 0.153

Data set-II: Bladder Cancer Data
LTTED 310.064 624.128 627.506 0.080 0.382
TED 311.441 626.882 630.260 0.095 0.195
EED 310.156 624.311 627.689 0.073 0.511
WD 322.056 648.111 651.489 0.070 0.557
LED 318.921 639.843 641.532 0.078 0.411

Data set-III: Leukemia Dataset
LTTED 412.784 829.568 835.272 0.185 0.113
TED 413.497 830.995 836.699 0.188 0.105
EED 413.078 830.155 835.859 0.165 0.201
WD 414.087 832.174 837.878 0.307 0.001
LED 414.962 831.923 834.775 0.293 0.002

5.3 Data set-III: Leukemia dataset

The dataset-III is taken from Abouammoh et al. (1994), which represents the ordered lifetimes
of 40 patients suffering from leukemia, collected from one of the Ministry of Health hospitals in
Saudi Arabia. The data set is
115 181 255 418 441 461 516 739 743 789 807 865 924 983 1024 1062 1063 1165 1191 1222 1222
1251 1277 1290 1357 1369 1408 1455 1478 1549 1578 1578 1599 1603 1605 1696 1735 1799 1815
1852

The TTT plot for this dataset is presented in Figure 6. The plot indicates that the data
exhibits an increasing hazard rate, which suggests that models with an increasing hazard rate,
such as the proposed LTTE model, may be particularly suitable for accurately representing the
underlying data behavior. The results of this comparison, as summarized in the third part of
Table 3, reveal that the LTTE model achieves the lowest AIC and BIC values among all the
competing models. These lower values indicate that the LTTE model provides the best balance
between model complexity and goodness-of-fit for the leukemia data set. Consequently, the
LTTE model is determined to be the most appropriate and effective distribution for analyz-
ing this dataset, reinforcing its potential as a robust tool for modeling lifetime data with an
increasing hazard rate.
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Figure 5: TTT plot of bladder cancer dataset.

6 Summary and conclusions

This research paper formulates a new lifetime probability model, named log transformed trans-
muted exponential by the extension of transmuted exponential via log transformation. The
proposed distribution has an increasing hazard rate. Numerous significant properties of the new
distribution are discussed including moments, skewness, kurtosis, order statistics, entropy, quan-
tile function, reliability function and hazard rate. The maximum likelihood estimation procedure
is employed to estimate the model parameters. Lastly, we considered three real-life datasets of
cancer patients and four other distributions namely transmuted exponential, exponentiated ex-
ponential, log exponential and Weibull distributions. It is observed that the proposed LTTE
distribution fits the considered datasets very well. The AIC, BIC, and KS-test values illustrate
that proposed distribution is better than the above mentioned existing distributions and can be
used as an alternate model for the cancer patients datasets.
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