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Letter from the Editor-in-Chief

It is my great pleasure to present this issue of Stochastic Models in Probability and Statistics
(SMPS). As an international, peer-reviewed, open-access journal, SMPS remains committed to
advancing both the theoretical foundations and practical applications of stochastic modeling,
probability, and statistics—with a particular focus on reliability and related disciplines.

SMPS publishes two issues annually and is proudly supported by the Department of Statistics,
Faculty of Mathematical Sciences, Ferdowsi University of Mashhad.

The journal’s mission is to promote the development and dissemination of innovative method-
ologies and ideas that bridge stochastic modeling in probability and statistics with real-world
applications. In this spirit, SMPS welcomes high-quality contributions across a broad range of
topics, including reliability theory, lifetime data analysis, stochastic modeling in industrial and
systems engineering, operations research, statistical methods in information theory, and depen-
dence modeling.

On behalf of the editorial board, I would like to express my sincere gratitude to all authors
for their valuable scholarly contributions, to the reviewers for their thoughtful and constructive
evaluations, and to the editorial team for their unwavering dedication and professionalism. The
continued success of SMPS is made possible by the collective efforts of this dynamic community
of researchers and practitioners who share a common goal: advancing the field of stochastic
modeling and statistical reliability analysis.

Finally, I warmly invite readers and contributors around the world to support SMPS by submit-
ting original research, citing published work, and sharing new ideas that help shape and expand
the journal’s vision.

Jafar Ahmadi
Editor-in-Chief
Stochastic Models in Probability and Statistics (SMPS)
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On some bivariate integer-valued distributions on 7>

Nada Nadim Alkhatib and Emad-Eldin Aly Ahmed Aly*

Department of Statistics and Operations Research, Kuwait University, P.O. Box 5969, Safat
13060, Kuwait

Email(s): engalkhatib. 92@hotmail.com and eealy50@gmail.com

Abstract. We proposed and studied a new bivariate random sign transformation of nonnega-
tive bivariate integer-valued distributions. This transformation develops new bivariate integer-
valued distributions on Z?. We applied the new transformation to the bivariate Poisson and
the bivariate geometric distributions. As an illustration, we fitted a real-life data set developed
based on the results of the 2019 UEFA Europa League using the new distributions.

Keywords: Bivariate RST; ML estimators; MM estimators; Monte Carlo simulations.

1 Introduction

The development of nonnegative integer-valued bivariate distributions has received considerable
attention in the literature. For important results and reviews on this topic, we refer the reader
to Kocherlakota and Kocherlakota (1992), Johnson et al. (1997), Lai (2006) and Sarabia Alegria
and Gémez Déniz (2008). Some recent important results in this area include Odhah (2013),
Genest and Mesfioui (2014), Bulla et al. (2015), Omair et al. (2016) and Karlis and Mamode
Khan (2023).

Chesneau et al. (2018) noted that changes in intra-daily stock prices take both positive and
negative integer values and that the price change is therefore characterized by discrete positive
and negative jumps. This motivated Chesneau et al. (2018) to propose and study some bivariate
integer-valued distributions on Z2. Omair et al. (2022) proposed some bivariate integer-valued
distributions on Z? and applied their models to fit the two real life data sets; the difference in
the number of casualties to the number of employees on duty on railroads and the difference in
the number of goals scored in the English Premier League in different years.

In this paper, we proposed and studied a new bivariate random sign transformation (BRST)
of nonnegative bivariate integer valued distributions. The BRST is an extension of the random

*Corresponding author
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DOI: 10.22067/smps.2025.91162.1039
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sign transformation (RST) of Aly (2018). The BRST is also a generalization of the transforma-
tion used in Chesneau et al. (2018). We used the BRST to introduce and study new families of
bivariate integer-valued distributions on Z2. The first family is developed based on the bivariate
Poisson distribution (BPD). The second family is developed based on the bivariate geometric
distribution (BGD).

In Section 2, we review some important bivariate integer-valued distributions. In Sections 3,
we introduce and study three versions of the BRST. In Section 4, we apply the transformations
of Sections 3 to the BPD. In Section 5, we apply the transformations of Sections 3 to the BGD.
In Section 6, we report the results of Monte Carlo simulation studies conducted to evaluate the
estimators of the parameters of the models of Sections 4 and 5. In Section 7, we apply the
models of Sections 4 and 5 to a real life data set developed based on the results of the 2019
UEFA Europa League.

A random vector (or variable) will be denoted by RV. The probability mass function of
discrete RV will be abbreviated by pmf and the joint probability mass function of a discrete RV
will be abbreviated by jpmf. The univariate Bernoulli distribution with parameter 6 will be
denoted by Ber(6). The geometric distribution with pmf,g(x) =(1-0)*6,x=0,1,...,0< 0 < 1,
will be denoted by Geo(8). The Poisson distribution with parameter A > 0 will be denoted by
Poi(A).

2 Some bivariate integer-valued distributions

2.1 Some bivariate Bernoulli distributions

Definition 1. Assume that B = (Boo,Bo1,Bi0,Bi1), where 0 < Bi; <1 and LY Bij=1. The RV
- i,j=0,1
(U1>U2) with .]pmfa

is said to have the Bivariate Bernoulli (BV Ber) distribution denoted by BV Ber(f).

Lemma 1. Assume that U, ~ Ber(Bi11 + Bio), V2 ~ Ber( Bu ) and V3 ~ Ber(L) are inde-

Bii+Bio 1=B11—PBo
pendent. Let
U =UV2+(1-U1)V3, (2)
then, (U1,Uy) has the BV Ber(B) distribution of (1).
Definition 2. The RV (U;,U,) with jpmf,
g(ul,uz) — pagl-m a(l—ul)(l—uz)-‘ru]uzaul(1—uz)+u2(1—u1)’ ui,up =0, 1 (3)

is said to have the two parameters BV Ber distribution denoted by BV Ber(mw, o).

Note that the BVBer(m, ) of (3) is the special case of (1) when B; = ax, By = ax,Bio =
o, Poo = am. To generate (Uj,U,) from the BVBer(mw,o) of (3), we independently generate
U, ~ Ber(m),V, ~ Ber(a) and V3 ~ Ber(@) and use (2).

Note that if (U;,Uz) ~ BVBer(m,o), then Uy ~ Ber(w),U, ~ Ber(ma + waX),Cov(U,,U,) =
nw(2a—1) and U, U, are independent if and only if o =0.5.
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Definition 3. The RV (Uy,U,) with jpmf,

Uy +uy—2uyuy

gur,ur) = fﬁl it g . 0<B<lu,u=0,1, (4)

is said to have the one-parameter BV Ber distribution denoted by BVBer(fB).

Note that BV Ber(p) is the special case of BVBer(f) when By = B11 = %ﬁ and Bo1 = Pio = %B

Note also that if (Uj,Us) ~ BVBer(B), then U; ~ Ber(%),i=1,2,Cov(U;,Us) = L{land U,,U, are
independent if and only if f = 5

To generate one realization (Uj,U,) from BVBer(B) of (4), we independently generate Uj ~
Ber(1),Va ~ Ber(B) and Vs ~ Ber(B) and use (2).

2.2 The BPD

Assume that W; ~ Poi(4;), j=1,2,3 are independent RV. It is well known that (X; =W; +W3,X, =
W, 4+ W3) has the bivariate Poisson distribution (BPD(A)) with jpmf

l lé mm St AS
—(M+A2+43) M1 —
p(s,t;A) = 1 7] ,Z' <><> <117Lz> s,t=0,1,2,.... (5)
Note that
E(X;) =Var(X;) = A; + A3 and Cov(X1,X2) = A3. (6)

For a comprehensive treatment of the BPD, we refer to Kocherlakota and Kocherlakota (1992)
and Johnson et al. (1997). The jpmf of (5) can be computed by using the R function “pbivpois”
of Karlis and Ntzoufras (2005). Let (X;;,X2;),i=1,2,...,n be a random sample from (5). The
MLE of A1,A; and A3 can be obtained by using the R function “simple.bp” of Karlis and Ntzoufras
(2005). The method of moments estimators (MME) of 41,4, and A3 are given by

A’J:YJ_AC% ]:1727 (7)

and

J= 1Y (%K) (- X). ®

i=1

2.3 The BGD of Phatak and Sreehari
The RV (X1,X>) with jpmf,

4(5,1:0) = <S+’)5555(1 S8 -8),  s1=0,1.2,... 9)
A

where 0 < 8,8 <1 and 0< 1—0; — & < 1, is said to follow the BGD of Phatak and Sreehari
(1981), denoted by BGD(9).

Note that for the BGD(§), the following results hold (see, Krishna and Pundir (2009) and
Hogg et al. (2005)):
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1. X; ~ Geo (1 5‘52 ) and X5 ~ Geo (1—&(;2) .
2. Let (X1;,X2),i=1,2,...,n be a random sample from (9).

(a) The MLE of §; and 6, are given by

/s\j:

X;
- i=1,2, 10
X, j (10)

1+ +Xz’

where X ; —72 1 Xjinj=1,2.

(b) Using the result that ¢(0,0;8) =1— 0y — &, the MME of §; and &, are obtained as

follows:
~ X " IXi=0,X,;=0 .
0j = RSVSLICS 2 ), j=12. (11)

n

3. We may generate a realization (X1,X») from the BGD(J) as follows:

(a) Generate X, from Geo(1— %)
(b) Given that X, =y, generate Vi,V,,...,V,1 independently from Geo(1— ;) and set

Zy-H
3 The BRST
Definition 4. Assume that (Uy,U;) has a BVBer distribution, that (X1,X2) is a nonnegative
integer-valued RV independent of (Uy,U,) with jpmf, f(s,t). Let fi(-) be the marginal pmf of
Xi,i =1,2. Then, the BRST of (X1,X3) is defined as

Zi=QUi-1)X, i=1,2. (12)

3.1 BRST based on the BVBer(f3)
Assume that (U;,Uy) ~ BVBer(f) of (1). In this case, the jpmf of Z; and Z; is given as follows:

1(0,0) = £(0,0), (13)
(Bii+ Bio) f(5,0), s=1,2,...

Hs0) = {(/300+ﬁ01) (—s,0), s=—1,-2,... (14)
(B4 Bor) f(0,1), t=1,2,...

ho, t)_{ (Boo + Bio) f(0,—1), t=—1,-2,... (15)

and
ﬁoo, s,t=—1,-2,...
_ Bio, s=1,2,....6=—1,-2,...
Mo =S g o= 1 2 =120
ﬁ]], s,;t=1,2,....

(16)
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For i = 1,2, the marginal pmf of Z; is given by

(Bi1+ Bio) fi(s), s=1,2,...
hi(s) =< fi(0), s=0,
(Boo+1(i = 1)Bo1 +1(i = 2)B1o) fi(—s), s=—1,-2,....

Lemma 2. It holds that
1, if m and n are even,
E(Z1Z;') = E(X{'Xy") x
(1=2B10—2Po1), if m and n are odd.

Proof. Note that (18) follows from the result that for m,n =0,1,2,..., we have

1, if m and n are even,
nem  onm (2U1—1) if m is even and n is odd,
2% = XXy X (22U, —1), if m is odd and n is even,
(2U; —1)(2U, — 1), if m and n are odd.

Corollary 1. By (18), we have

if n is even,

A Xl)x{ (2B +2Bio—1), if n is odd,

if m is even,

EZzy)=E /311+2l3m—1), if m is odd,

and
E(lez) = (1 —Zﬁlo — 2501)E(X1X2).

Hence, by (19)-(21), for i =1,2,
E(Z})=E(X}),

E(Z) = 2B +2(i=1)Bio+21(i=2)pn — 1) E(X;),
Var(Z,-) :Var(X,-) +4(ﬁ11 +I(i = 1)ﬁ10+1<i = Z)ﬁ()])
x (1= By —1(i = 1)Bio—1(i = 2) Bon ) (E(X;))?
and

COV(Zl ,Zz) = (1 - 2B10 — 2B01)COV(X1 ,Xz)
+4E(X1)E(X2) (Bir — (B + Bro) (Bi1 + Po1)) -

(2B11+2B1o—1), if m is even and n is odd,
(2B11+2Bo1 — 1), if m is odd and n is even,

(18)

(19)

(20)

(22)

(23)

(24)

Corollary 2. In the special case when Uy and U, are independent (i.e., when Bi; = a0, Bio =
00y, o1 = @10 and Poo = @10y with 0 < ay,0p < 1) (18)-(24) reduce to the corresponding

results of Chesneau et al. (2018).
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Let EN(W;,W,) be Shannon’s entropy (see Shannon (1951)) of the RV (W;,W,) and let EN(V)

be Shannon’s entropy of the RV V. Then, we have the following lemma.

Lemma 3. It holds that

EN(Z1,25) = EN(X1,X2) + EN(U1,Us) {1 — f1(0) — £(0) + £(0,0)}
+(f1(0) = f(0,0)) EN(U2) + (f2(0) — f(0,0)) EN(U)).

Proof.

oo oo

EN(Z\,2,) = Z Z h(i, j)Inh(i, j) ZS

i=—oco0 j=—o0 r=

where

Sy = —£(0,0)In£(0,0),

—oo oo

ZZ/’Z(Z HInh(i,j), Sz3= Z Zh —i, j)Inh(—i,j),

i=1j= i=—1j=

=Y ¥ i =)kl =j), Ss=— Y ¥ h(~i—j)nh(~i,~),
i=1j=-1 i=—1j=-1

— Zh(O,j) Inh(0,j), S7=— Z h(0,—j)Inh(0,—j),
j=1 j=-1

)

Sy ==Y h(i,0)Inh(i,0), and Sy=— Y h(~i,0)Inh(—i,0).
i=1 j==1

For S,, we have

= —ﬁulnﬁuz Zf(l J)—Bn Z Zf i, j)Inf(i,j) = —BuTiIn P11 + Pu Iz,

i=1j= i=1j=

where

Ty =1—£1(0) — £2(0) + £(0,0) and T = ZZfzjlanJ)

i=1j=

For S3, we have

—oo oo

-Y) Zﬁmf —i, j) {In o1 +1n f(—i, j) }

i=—1j=

:—ﬁo]lﬂﬁ@lZZflj ﬁOlZZfl.] h’lf(l .])

i=1j= i=1j=
= —PBotInPo1 T + Po1 T>.

Similarly,
S4 = —BiolnPioT1 + PioT> and Ss= —PoolnPooTi + PooT>-
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Hence,
5
Y S, =EN(U\,U))T +T>. (28)
r=2
We can show that
T, = EN(X;, %) — £(0,0)1n £(0,0)+ Y. [£(0,0) In £(0,) + £(;,0) In £(:,0)]. (29)
i=0

For S¢, we have

oo

Se ==Y (Bi1+Bor) £(0, /) {In(Bi1 + Bor) +1n £ (0, )}

J=1

o

= (B B B+ Bor) X £(0.7) = (Bua+ o) i (0,)Inf(0,))
)2 )2

— (Bt + Bot) In(Br1 + Por) (f1(0) — £(0,0)) + (Bi1 + Bor) £(0,0)In £(0,0)
— (Bi1 + Bor) Zf(o, i) In £(0,1).
i=0

For §7, we have
— (Boo + B10) In (Boo + Bio) (f1(0) — £(0,0)) + (Boo + Bio) £(0,0)In £(0,0)
- (ﬁOO +B10) Zf(o? i) lnf(oai)'
=0

Hence
Se+87=—13 £(0,i)Inf(0,i) + (f1(0) — £(0,0)) EN(U>) + £(0,0) In £(0,0). (30)
i=0
Similarly,
Sg+Sg = — if(i,O)lnf(i,O) + (f2(0) — £(0,0)) EN(U;) + f(0,0)In £(0,0). (31)
i=0

By (26)-(31), we obtain (25).

3.1.1 Maximum likelihood estimators (MLE)

Assume that 0 is the unknown parameter vector in the jpmf of (X;,X;) and hence in the
jpmf of (Zl,Zz). In what follows, the presence of 8 will be made explicit in both f and h. Let
(Z1,2,,),i=1,2,...,n be a random sample from h(-,-;0) of (13)-(16). Define

n n
no=Y 1(Z1;=0,2,;=0), nig=Y 1(Z1;>0,2,;=0), (32)
i=1 i=1
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n n
n_p= Z[(Zu < O,Zzyi = 0), no4+ = ZI(ZU = O,sz > 0), (33)
i=1 i=1
n n
nyg— = ZI(ZU = O;ZZJ < 0), ny 4+ = ZI(ZU > O,ZQJ > 0), (34)
i=1 i=1
noy=3Y1(Z1;<0,2;>0), ny =Y 1(Z1,;>0,7,;<0), (35)

i=1 i=1

and
n

n._ = ZI(ZIJ < O,ZZJ < 0) . (36)
i=1

We can show that
E(no) = nP(21 = O,Zz = 0) = nf(0,0;Q),

E(nyp)=n(Bi1+PBio)(f2(0:8)—£(0,0:0)),
E(n_o)=n(1—Bi1—PBio) (f2(0;0) — £(0,0;0)), 39

(37)
(38)
(39)
E (no+)=n(Bi1+Bor) (f1(0;8) - f(0,0:0)), (40)
(41)
(42)
(43)
(44)

38

E(no—)=n(1— B —Por) (f1(0;0) - £(0,0;8)), 41
E(nyq)=npu(1- ( 0)— /2(0:8) + f(0,0:6)), 42
E(n_ 1) =nPor (1= f1(0;8) — f2(0;0) + f(0,0;8)), 43
E(ne—)=nPio(1- ( 0) — /2(0;0) + £(0,0:6)), 44

and

E(n__)=n(1=PBi—PBio—Por) (1 —f1(0;0) — £2(0;0) + £(0,0;0)). (45)

Lemma 4. Assume that T(X,X,) is the MLE of 0 based on a random sample from f(-,-;6),
and let Ix, x,(0) be the corresponding Fisher Information Matriz. Let (Zy;,Z,,;),i=1,2,...,n be
a random sample from h(-,-;0) and let ny g,...,n_ _ be as in (32)-(36). Then, for the MLE of
QaBlbﬁlO and ,301, we have

1.
=I(2, 12D

2. [/3\11,[/3\10 and Bol are obtained by mazximizing

I =nq oIn(Bi1 + Bio) +n—oln (1 —Bi1 — Bio) +no.+ In(Bi1 + Por)
+no,—In(1—B11 —Por) +ny InPiy+n_ 1Py
+ny _InBro+n__In(l— B — PBio— Por) (46)

subject to the constraints,

0<Biu<1, 0<Bip<l, 0<Boi <1, and 0<Bi1+Pio+Por < 1.
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3. ~
Bii—Bu
P Bio—Bio D [ Y 0 ]
i B | MO Re | )
6-6
where
01 O12 O13
Zl =] 012 02 O3 |,
013 023 O3
o 1—£1(0;0) — 2(0;0) + £(0,0;0)
> 1—PBi1—Bio— Poi ’
__NL0:8)-f0.0:8) . fi(0:6)—f(0,0:6)
(Bur+Bio) (1= Bi1—Pio) ~ (Bir +Por) (1 =B —Por)
. (1—=Bio—Po1) 023
Bii ’
o — £2(0;8) — £(0,0:0) N (1—Bi1 — Por) o3
™ (Bur+Bio) (1— B — o) Bio ’
on f1(0;8) — £(0,0;0) +(1—ﬁ11—ﬁ10)623
: (Bi1+ Bor) (1 = Bi1 — Por) Bo1 ’
_ f2(0:,0) — £(0,0;0)
o= (Bi1+ Bio) (1 = Bi1 — Bio) o
i £1(0:8) = £(0,0:6)
_ 1 0)— , U, 60
3= Bui +Bor) (1— Bri — Bor) o
Proof. The log-likelihood function (Log-LF) of the sample is given by
=1 +1, (48)
where /; is as in (46) and
L=y Inf(|z1l,]z2:8) (49)
i=1

It is clear from (48),(46), and (49) that the MLE of 8 is obtained by maximizing /» and the
MLE of B11B1o and By are obtained by maximizing /; subject to the constraints,

0<Bi<1,0<Bip<1,0< Py <1, and 0 < By +Pio+Pu < 1.

We will use the R function “constrOptim” to obtain the MLE of B1810 and By;. To obtain ¥,
of (47) we use (37)-(45) and the following results:

921 B 2%l . ni B n— B no+
IBL IBL (Bu+PBio) (1—PBi—Bio)> (B +Bu)
ng,— e n——

(1—=Bu—PBu)* B (1=Bii—PBio—Bu)”’
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2%l B 2%l B ni n_o ny n__
B 9Bh (BB} (1-Pu—Buw)? B (1-Bu—Po—Pu)*
R no 1 ng,— n_ n_._
IBs 9By 7(311 +Bor)’ - (1—Bi1 —Por)’ - Bsi - (1—Bir —Bro—Bo1)*’
2%l B 2% B ni n_o n__
IBdPii  BodBi (Bu+B)’  (1—Bu—Bio)>  (1—Bi—Pro—Por)*
2%l 2%, no,+ ng,— n

FBndBn BB ButPul  (—Pu—Bo)  (1—Bu—Bro—Po )

and

a  d B n— -
9B10dPfo1  IP0dBor (1 — P11 —Pro—Por)*

3.1.2 Method of moments estimators (MME)

Lemma 5. Assume that f(, -) is the MME of 8 based on a random sample from f(-,-;0). Then,
for the MME of 0, B11,Bio and Bo1 we have

~ 1
ﬁ1021{1+A1*A2*C}7 (51)
~ 1
Boi 21{1—A1+A2—C}, (52)
and |
Bii :Z{1+Al +A,+C}, (53)
where
noz.
= ERZE o, (54
Zizl |Z.i,i|
and " gz
_ z;;izl Lil2i (55)
Y |Zy iz,

Proof. Note that Ell,ﬁm and E()] are obtained as follows. We start by solving

%izl,i:(Zﬁll+2B]0—1){E(X1)’Q:E}, (56)
i=1

%izzi = (2B11 +2Bo1 — 1) {E(Xz) ’Q:E } , (57)
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and

1 n
. Y 212 = (1—2Bo1 —2B0) {E(X1X2) ‘925 } .
=1 T

Note that
X1X2 = ‘Z1Z2| and E (X1X2) = E(|Z122|) .

Hence, (58) can be replaced by
1 ¢ 1 ¢
=Y 212 = (1—=2Bo1 —2B10) = Y 12122, -
i iz
We can show that (56), (57), and (59) are, respectively, equivalent to
A1 =2B11 +2B10 - 1,

A =2En +2B()1 -1,

and N N
C=1-2Bu1 —2po-
By solving (60)-(62), we obtain (51)-(53).

11

(58)

(60)

(61)

(62)
O

Consider the special case when X; and X; are independent. In this case, the MMFE estimators

of Bio, Po1 and By are as given in (51)-(53) after replacing C of (55) with

UDNVARYSY

C = .
LT 120 (B | Z2)

3.2 BRST based on the BVBer(m,a) distribution

Assume that (U;,U,) has the BVBer(w, a) distribution of (3). Define (Z;,Z,) as in (12). Then,

the jpmf of Z; and Z, is given as follows:
h(0,0) = £(0,0),

_ nf(s?0)7 S:1,2,...7
h(s,0) —{ Tf(—s,0), s=—1,-2,...

| (am+0oam) f(0,2), t=1,2,...,
h(o’t)_{ (arn+ox) f(0,—t), t=—1,-2,...

and
To, st=-—1,-2,...

h(s,0) = f(Isl,e]) x ¢ =

ar, s=-—1,-2,....t=1,2,...

ar, s,t=1,2,....

ar, s=1,2,....t=—1,-2,...

(63)

(64)

(65)
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The marginal pmf’s of Z; and Z, are given by

nfi(s), s=1,2,...
hi(s)=4q fi(0),  s=0, (67)
Tfi(=s), s=—1,-2,...

and
(amr+am) fr(t), t=1,2,...,

hy(t) = ¢ f2(0), t=0, (68)
(an+am) fo(—t), t=—-1,-2,....

Lemma 6. It holds that

1, if m and n are even,
normy _ nym (2r—1), if m is even and n is odd,
E(2i77) = E(XiXy') a—1)2x—1), if mis odd and n is even,
Qa—-1), if m and n are odd,

. ; 1, if n is even,
E( 1)—E(X1)><{ (2r—1), ifnis odd,

. " 1, if m is even,
E(Zz)—E(Xz)X{ Qa—1)2r—1), ifm is odd,

E(Z))=(2rn-1)E(X)),
E(Zy) = (2a—1)(2n—1)E(X>),
Var(Zy) = Var(X)) + 477 (E(X,))?,
Var(Zy) = Var(X,) +2 (o +an) (E(X2))?,
E(Z1Z:) = 2a—1)E(XX,),
and

COV(Z] ,Zz) = (206 — 1) {COV(X] ,Xz) +47[ﬁE<X1)E(X2)} .

3.2.1 MLE estimators

Assume that (Z);,2Z5;),i =1,2,...,n is a random sample from A(-,-;0) of (63)-(66). Let I, be as
in (49) and let n4 g,n+ _,n+ 4 be as in (32)-(36) and

Ny . =Nio+ny Ny .
The Log-LF of the sample is given by
I3 =1+,
where

ly=ny Inmw+n_ . InT+ (ny4+n__)In(a)+ (n_+ny_)Inex
+no+In(ar+am)+ny,—In(aw+or).
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Lemma 7. Assume that T(-,-) is the MLE of 8 based on a random sample from f(,8), and
let Ix, x,(0) be the corresponding Fisher information Matriz. Let 0,7 and a be the MLE of 0,7
and &. Then,

1.

0="1(21],|2)).

2. T and & are obtained by maximizing ly subject to the constraints,
0<a<land0<m<I.

3. Asn—> oo,

T—=m 4
Vil a-a L>MVN(0,[0ZZ Q,l }
G-0 v X17X2(Q)
where
o o}
Zz: [ Gi*z 6}2 }’
of — (f1(0;8,) — £(0,0;6,,6,)) (2o — 1)2 1-/f1(0;6,)
! (arm+or) (a7 +ar) AR
of = (f1(0;8,) — £(0,0;8,,8,)) (27 — 1)2 4 1-£1(0;0,) — f2(0;8,) + f(0,0;6,,6,))
2 (am+am) (am+am) ad ’
and

o = f1(0:8,) — f(0,0:6,,6,)) (20 — 1) 27 — 1)
2= (ar+on) (am+on) '

Proof. To obtain Y,, we use (38)-(45), (69)-(71),

d%l - _
T o) s M= U g 1)2r—1) L L SN ()
dadn OT+ 0O OoT+Orn (ar+aw)” (oaT+ar)

82l4 ny. n_. 2 ny + no,—
=T 2a—1 7 + : ; 70
on? A ( ) (an+om)*  (am+on) (70)
and
9%l 2 1o+ no,— Nyt+n - noy+ng -
5> =—02rn-1) st e (71)
do (an+azm)” (am+an) o o

O
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3.2.2 MME estimators

Lemma 8. Assume that f(,) is the MME of 8 based on a random sample from f(-,-;8). For
the MME of 6,7, and o, we have

=1(zl.|2)).
~ Y Zii+ Y2
= ’ ' 2
S VR (72
and
n n
& _ { (Z =1 |Zl l|) X (%‘4 ZZZ) } (73)
2 ( lzlt (Z 1’221’)
Note that T and & are obtained by solving
n n
ZZU = (271?* 1) Z |Z]7,'|

i=1 i=1

and

222,_ 2o —1)(2x—1) Z|Z2z

i=1

3.3 BRST based on BVBer(p)

Assume that (U;,U,) has the BVBer() distribution of (4). Define (Z;,Z;) as in (12). Then, the
jpmf of Z; and Z, is given as follows:

1(0,0) = £(0,0), (74)
1 f(s,0),  s=1,2,...
h(s,O)—zx{ f(=s,0), s=—1,-2,... (73)
_1 f(0,1)7 t:1’2’
M“”—zx{fw,w,rz 1,-2, i
and
E, s,;t=—1,-2,...
1 =1,2,....t=—1,-2,...
h(s,1) = 5 f(Is], 1) > g’ z:_’17_2’?_ f=1.2... (77)

B, st=12,....

The marginal pmf’s of Z; and Z, are given, for i = 1,2, by

%ﬁ(s), s=1,2,...
h(s)=1{ f(0),  s=0, (78)
%fi(—s)’ s:—1,72,....
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Lemma 9. It holds that

1, if m and n are even,
— nom 0, if m is even and n is odd,
E(4Zy) = E(XX3') 0, if m is odd and n is even, (79)
2B —1, ifm and n are odd,
1, ifn is even .
ny __ n ) 3 _
E(Zi) = E(X7) { 0, ifnis odd, i=12, (80)
Var(Z;) = Var(X;) + (E(X)))*,  i=1,2, (81)
and
Cov(Z1,Zy) = (2B — 1) {Cov(X1,X2) + E(X1)E(X2) } (82)
Proof. Note that for i=1,2 and r=0,1,2,...,
7 X/, if r is even,
! QU;—-1)X!, if ris odd.
Consequently, for m,n=0,1,2,...,
1, if m and n are even,
nem onm (U, - 1), if m is even and n is odd,
2% = XXy X (U, —1), if m is odd and n is even,
(2U; —1)(2U, — 1), if m and n are odd.
Hence, we obtain (79) and (80). Using (79) and (80) ,we obtain
E(Z))=E(Z) =0,
E(Z)=EX}), i=12,
and
E(Z12,) = (2B — 1) E(X\X>).
Hence, we obtain (81) and (82). O

Remark 1. 1. For the MLE, we use the notation of Lemma 4. We can show that the log-LF
is given by -
I=C+(ny++n__)InB+(ny_+n_)Inf+1,
where lp is as in (49). Hence, the MLE of 0 is as in Lemma J and the MLE of B is given

by
Ny ++n_

nygtno_+ng o 4no g

B= (83)

In addition, as n — o

.

2. The MME of 6 is as in (50) and the MME of B is given by

> 1| YZiZ; }
=~ =l L 84
2 2 { Y |21, (84)

D) =)

:[93 ) L MvN (Q, daig {[337 I);ll,xz (@}) ’
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4 BRST of the BPD

Assume that (U;,U,) has a BV Ber distribution, that (X,X>) has the BPD of (5) and that (X;,X>)
is independent of (Uj,U,). In the three models of this section, we may estimate A;,4; and A3
using the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using the R function “simple.bp” of Karlis
and Ntzoufras (2005) on (|Z1|,|Z24),i=1,2,...,n.

2. The MME of (8) and (7) expressed in terms of (|Z;,],|Z2,]),i=1,2,...,n.

4.1 Models based on the BVBer(f) distribution

Assume here that (U;,Us) has the BVBer(f) distribution of (1). In this case, the jpmf of Z,
and Z, is given as in (13)-(16) after replacing f(-,-) by p(-,~;A) of (5). The marginal pmf’s of
Z) and Z, are given as in (13) and (16) after replacing f;(-) by the pdf of Poi(A;+ A3),i=1,2.
Using (22), (23), (24), and (6) we obtain
Cov(Z1,Z5) =(1 =2B10—2Bo1) A3 +4 (A1 + A3) (A2 + A3)
% (Bur = (Bi1+ Bro) (Bir + Por))

E(Zi) = 2P +21(i=1)Bio+2(i=2)po —1) (MI(i=1)+Ml(i=2)+1),
and

Var(Z;) = (M (i =1)+Ml(i =2) 4+ A3) +4 (B +1(i = 1)Bro+1(i = 2)Bo1)

X (1=Bi—1(i=1)B1o—I(i =2)Bo1) (MI(i = 1)+ Al (i = 2) + 13)*.

For the estimation of B1, Bio, and By, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using the R function “constrOptim”.
2. The MME of (51)-(53).

In each of Figures 1 and 2, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of § and A.

4.2 Models based on the BVBer(m,a) distribution

Assume that (Uj,U,) has the BVBer(m,a) distribution of (1). In this case, the jpmf of Z; and
Z, is given as in (63)-(66) after replacing f(-,-) by p(:,-;A) of (5). The marginal pmf’s of Z;
and Z, are given as in (67) and (68) after replacing f;(-) by the pdf of Poi(A;+ A3),i=1,2. In
addition,
E(Z)) =(2r—1) (M +23),
E(Zy) =Q2a—1)27—1) (A2 +43),

Var(Zy) = (M 4+ A3) +477T (A + 43)%
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Figure 1: BRST of BPD with B = (0.4,0.22,0.17),A = (9,7,2),p = 0.137, and n = 100.
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Figure 2: BRST of BPD with B = (0.2,0.3,0.35) ,A = (3,2,1),p = —0.22, and n = 100.
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Var(Zy) = (A4 A3) +2 (@ + o) (A + 43)*,

and
COV(Zl ,Zz) = A3 +47l'ﬁ(206 — 1) (/‘Ll + 13) ()Lz + /13) .

For the estimation of # and o, we may use the following alternatives:

1. The MLE estimators obtained as in Lemma 6 using the R function “constrOptim”.

2. The MME of (72)-(73).

In each of Figures 3 and 4, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of m,@ and A.
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Figure 3: BRST of BPD with = =0.6,a =0.7,A = (5,8,6),p = 0.379, and n = 100.
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4.3 Models based on the BVBer(f}) distribution

Assume that (U;,U,) has the BVBer(f) distribution of (4). In this case, the jpmf of Z; and Z,
is as given in (74)-(77) after replacing f(-,-) by p(-,;A) of (5). The marginal pmf’s of Z; and
Z, are given as in (78) after replacing fi(-) by the pdf of Poi(A;+ A3),i = 1,2. In addition,

E(Z1) = E(Z2) =0,

Var(Z) = (Ai+2A3) + (i + A3)?, i=1,2,

and

Cov(Z1,Z)=2B—1)(A3+ (A1 +43) (A +A3)).
For the estimation of B, we may use the following alternatives:
1. The MLE estimator of (83).

2. The MME of (84).

In each of Figures 5 and 6, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BPD for selected values of B and A.
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o
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[ ]
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° ° 8 E
°
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& .l -20
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Figure 5: BRST of BPD with f§ =0.75,A = (4,7,8),p = 0.594, and n = 100.

5 BRST of the BGD

Assume that (U;,U,) has a BVB distribution, that (X;,X,) has the BGD with the jpmf of (9)
and that (X;,X;) is independent of (Uj,U,). In the three models of this section, we may estimate
01 and & using the following alternatives:

1. The MLE estimators obtained as in Lemma 3 using (10).

2. The MME of (11) expressed in terms of (|Zy],[Z|),i=1,2,...,n.
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Figure 6: BRST of BPD with B =0.4,A = (3,2,1),p = —0.144, and n = 100.

5.1 Models based on the BVBer(f) distribution

Assume that (U;,Uz) has the BVBer(B) distribution of (1). In this case, the jpmf of Z; and 7,
is given as in (13)-(16) after replacing f(-,-) by the jpmf of (9). The marginal pmf’s of Z; and
Z, are given as in (13) and (16) after replacing fi(-) by the pdf of Geo (1_51(;262> and f>(-) by

1—
the pdf of Geo (17151582> . We can show that

—01

(4

E(Z;) = (2Bu+21(i=1)Bio+2I(i=2)Po1 — 1)

)

&>

Var(Z) =(;—5'—5) (1 + 15 —5) =4 (Bu 1= 1o +1 = 2)Bor)
2
<= B+ = D +16=2p0) (15— )
and
. o en
OV(Zl,Zz) = (1 ~ 51 ~ 52)2 {(l 2B1() ZB()]) +4COV(U1,U2)},
where

Cov(U1,Uz) = Bi1 — (Bi1 + Bio) (Bi1 + Por) -

For the estimation of Bi1,Bio, and Bo1, we may use the following alternatives:
1. The MLE estimators obtained as in Lemma 3 using the R function “constrOptim”.
2. The MME of (51)-(53).

In each of Figures 7 and 8, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BGD for selected values of E and 6.
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Figure 7: BRST of BGD with 6 = (0.6,0.3,0.1), = (0.4,0.22,0.17),p = 0.3993, and n = 100.

10
3 e
L ]
6
[ ] [ ]
4
L] L ]
L] Fa
L] L] .
L L 0-# L
-2.5 -2 LS a -0.5 L ] 0.5 e 15 ° 2.5
-2 . [ ]
L ] [ ] L ] &
-4 8
L

'
=]

Figure 8: BRST of BGD with 6 = (0.2,0.48,0.32), f = (0.2,0.3,0.35),p = —0.387, and n = 100
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5.2 Models based on the BVBer(rm,a) distribution

Assume that (Uj,U,) has the BVBer(m,a) distribution of (1). In this case, the jpmf of Z; and
7, is given as in (63)-(66) after replacing f(-,-) by the jpmf of (9). The marginal pmf’s of Z,
and Z, are given as in (67) and (68) after replacing fi(-) by the pdf of Geo (1_1‘25252> and f>(+)

by the pdf of Geo (17]‘1;]62) We can show that

01
E(Z)) = (2”—1)m7
E(Z) = (205—1)(27:—1)1551252,
8 5 _ 8 2
Var(z1) = (5 _511_52)(1+ 1 _511_52)+4m <1 _511_52) :
2
Var(Z,) = (1—5812—52)(1 + 1_5612_62) +2(ar+am) (1—5(?—52> ,

and

I L R S (L
Cov(Zy,2) = {(151 —52)2 +4nm2a—1) ((151 52)2>}

For the estimation of # and o, we may use the following alternatives:
1. The MLE estimators obtained as in Lemma 6 using the R function “constrOptim”.
2. The MME of (72)-(73).

In each of Figures 9 and 10, we give the scatter plot of a random sample of size n = 100 from
the BRST of the BGD for selected values of o, 7 and A.

20

-30 -20 0 e w 20 30

Figure 9: BRST of BGD with 6 = (0.6,0.3,0.1),7 = 0.6,ct = 0.7,p = 0.4917, and n = 100.



On some bivariate integer-valued distributions on Z* 23

=]

L ]
4@
L ] [ ]
L ] 2 e [ ]

[ ] [ ] [ ]
@ oe @ .
-1.5 -1 -0.5 ® 05 a 15 [ 2.5

N [ ]
[ ] [ ] [ ]
40
[ ] [ ]
-6
L ]
g8 e

-10

Figure 10: BRST of BGD with 6 = (0.2,0.48,0.32),7 = 0.7, = 0.5, p = —0.24661, and n = 100.

5.3 Models based on the BVBer(f3) distribution

Assume that (U;,U,) has the BVBer(f) distribution of (4). In this case, the jpmf of Z; and Z,
is as given in (74)-(77) after replacing f(-,-) by the jpmf of (9). The marginal pmf’s of Z; and
Z, are given as in (78) after replacing fi(:) by the pdf of Geo <%) and f>(+) by the pdf of

Geo (%) . We can show that

5 26, -
V‘”(Zi)_1—61—52<1+1—61—62>’ i=1,2,

_202p-1)8i5
COV(Z],ZQ) = (1 ~ 61 ~ 62)2 .

For the estimation of f, we may use the following alternatives:

and

1. The MLE estimator of (83).

2. The MME of (84).

In each of Figures 11 and 12, we give the scatter plot of a random sample of size n = 100
from the BRST of the BGD for selected values of § and 6.
6 Simulations

We have conducted 12 simulation studies to asses the performance of the MLE and the MME
estimators of the model parameters. In each simulation, we used 10,000 realizations of samples of
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Figure 12: BRST of BGD with 8 = (0.2,0.48,0.32),8 = 0.4,p = —0.3335, and n = 100.

Table 1: BRST of BPD using BVBer(f).
A =3 A=2 =1
MLE | 2.998(0.199) 1.996(0.192) 1.002(0.182)

MME

3.005(0.228)

2.003(0.222)

0.995(0.214)

Bi1=0.2

Bio=10.3

Bo1=0.35

MLE
MME

0.205(0.016)
0.2(0.028)

0.283(0.021)
0.306(0.033)

0.357(0.017)
0.356(0.033)

Table 2: BRST of BPD using BVBer(w,a).

=3 do=2 A= 1 =07 =05
MLE | 2.998(0.199) 1.996(0.192) 1.002(0.182) 0.685(0.023) 0.5(0.021)
MME | 3.005(0.228) 2.003(0.222) 0.995(0.214) 0.7(0.029)  0.501(0.086)
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Table 3: BRST of BPD using BVBer(f3).

=3 To=2 Ta=1 B=04
MLE | 2.998(0.199) 1.996(0.192) 1.002(0.182) 0.4(0.031)
MME | 3.005(0.228) 2.003(0.222) 0.995(0.214)  0.4(0.041)

Table 4: BRST of BGD using BVBer(p).
pPo= 0.2 P1= 0.48 P2= 0.32
MLE | 0.2(0.013)  0.48(0.016)  0.321(0.015)
MME | 0.2(0.013)  0.48(0.016)  0.321(0.015)
B11=02 Bio=10.3 Bo1=0.35
MLE | 0.2(0.0111)  0.277(0.024) 0.35(0.011)
MME | 0.201(0.056) 0.299(0.056) 0.349(0.059)

Table 5:  BRST of BGD using BVBer(xw, ).
70=02  pi=048  pr=0.32 T=07 «=05
MLE | 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.675(0.037) 0.502(0.026)
MME | 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.699(0.05) 0.5(0.018)

Table 6: BRST of BGD using BVBer(f).
p0=02  p1=048  pr=0.32 B=04

MLE | 0.2(0.013) 0.48(0.016) 0.321(0.015) 0.4(0.051)

MME | 0.2(0.013) 0.48(0.016) 0.321(0.015)  0.4(0.086)

Table 7: BRST of independent Poisson RV using BV Ber(f).
AM=3 =12 Bi1=0.2 Bio=10.3 Bo1=0.35
MLE | 2.999(0.099) 2(0.082) _ 0.201(0.008) 0.286(0.016) _0.351(0.008)
MME | 2.999(0.099) 2.(0.082) 0.201(0.03)  0.3(0.033)  0.349(0.034)

Table 8: BRST of independent Poisson RV using BV Ber(n, o).
A1:3 2,2:2 =07 a=0.5

MLE | 2.999(0.099) 2(0.082) 0.684(0.025) 0.502(0.017)
MME | 2.999(0.099) 2.(0.082) 0.7(0.031)  0.502(0.092)

Table 9: BRST of independent Poisson RV using BV Ber(f3).
Ai=3 h=2  Pp=04

MLE | 2.999(0.099) 2(0.082)  0.4(0.031)

MME | 2.999(0.099) 2.(0.082)  0.4(0.040)




26 Nada Nadim Alkhatib and Emad-Eldin Aly Ahmed Aly

Table 10: BRST of independent geometric RV using BV Ber(f).
6,=0.5 6,=0.6 Bi1=0.2 Bio=0.3 Bo1=0.35
MLE | 0.501(0.02) 0.601(0.022) 0.199(0.003) 0.284(0.022) _0.35(0.005)
MME | 0.501(0.02) 0.601(0.022) 0.236(0.064) 0.263(0.066) 0.32(0.067)

Table 11: BRST of independent geometric RV using BV Ber(w, ).
6,=0.5 6,=0.6 n=0.7 a=0.5

MLE | 0.501(0.02) 0.601(0.022) 0.683(0.033) 0.504(0.059)
MME | 0.501(0.02) 0.601(0.022) 0.701(0.046) 0.5(0.01)

size 300 from the considered model. The mean (the standard deviation) of the 10,000 estimators
of each parameter are reported next in Tables 1 to 12.

The results of the Tables 1-12 suggest that both the MLE and the MME estimators perform
well in all the considered models. However, for most of the models, the MLE estimators have
smaller standard deviations than the corresponding MME estimators for all parameters.

7 Data analysis

The data of this example are based on the results of the 2019 UEFA Europa League. The 48
teams of this competition are divided into 12 groups of four teams each. Each team plays one
home match and one away match against the other three teams of its group. For each team,
we obtained one observation computed by taking the difference between a) the sum of scores of
its three home matches and b) the sum of scores of its three away matches. For example, the
observation of team Apoel of Group A (Apoel, Dudelange, Qarabag and Sevilla) is obtained as
follows. The sum of Apoel’s three home scores ((3,4),(2,1), and (1,0)) is (6,5) and the sum of
Apoel’s three away scores ((2,0),(2,2), and (0,1)) is (4,3). Hence, the difference ((6,5) — (4,3))
is (2,2). The resulting bivariate data of 48 observations is as follows:

(0-2)  (0-2) (04)  (0-4) (05  (0,7) (1,00 (L,1) (L-1) (-1-1) (1,3)  (-1,-3)
(-1-3) (1-4) (1-4)  (1-5)  (-1-6) (20) (2-1) (-21) (22) (2-3) (-2-3) (-2,-3)
(2-4)  (:24) (-24) (3-1) (32 (3 B-3) (“4-1) (4-2) (4-2) (43) (4-4)
(-4-5) (5-2) (-52) (6, 2) (6-2)  (64) (2-3) (3-5) (1,3) (2-2) (3-5 (7,0).

To fit the above data we will explore the following bivariate BRST models:

1. P1 (BPD based on BBer(f)), P2 (BPD based on BBer(m,a)) and P3 (BPD based on
BBer(f)).

Table 12: BRST of independent geometric RV using BV Ber(f).
6,=0.5 6,=0.6 p=04

MLE | 0.501(0.02) 0.601(0.022) 0.4(0.063)

MME | 0.501(0.02) 0.601(0.022)  0.4(0.092)
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2. P4 (independent Poisson RV based on BBer(f)), P5 (independent Poisson RV based on
BBer(m,a)) and P6 (independent Poisson RV based on BBer(f)).

3. P7 (BGD based on BBer(f)), P8 (BGD based on BBer(m, o)) and P9 (BGD based on
BBer(f)).

4. P10 (independent Geometric RV based on BBer(f)), P11 (independent Geometric RV
based on BBer(m,a)) and P12 (independent Geometric RV based on BBer(f3)).

In all of the above models we obtained the MLE. For models P1, P4, and P10, [311 =
0.19800 ﬁ1o = 0.46751, and ﬁm = 0.113099. For models P2, P5, and P11, 7T = 0.659675 and
o =0.418447. For models P3, P6, and P12, ﬁ 0.421. For models P1-P3, 7Ll = 1.634857 12
2.572357, and 7L3 0.7193102. For models P4-P6, 7Ll =2.35 and 7Lz = 2.83. For models P7-P9,
61 0.38, 62 0.457, and 63 0.162. For models P10-P12, 91 0.298 and 92 =0.261.

We divided Z? into the nine mutually exclusive areas corresponding to no,no+,N+,0,N+ —, and
n+ 4 of (32)-(36). The expected counts of each of these areas are computed using (37)-(45). For
example, the computations for model P, are given next. Note that in this case,

£(0,0:4) = 0.0072517,  £;(0;4) = 0.094973, and f>(0;4) = 0.037192. (85)
Hence, by (37)-(45) and (85), we obtain the following Table 13 for Model P1.

Table 13: Observed and expected counts for Model P1.
P1 no Nyo N_po  Noq Mo My Aoy My Ao
Observed | 0 2 1 3 4 7 4 18 9
Expected | 0.348 0.946 0.492 131 2901 8.326 4.742 19.31 9.6266

For each of the 12 models, we computed the Chi-square test statistic and the correspond-
ing P-value. The P-values for models P2, P3, and P6-P12 are all less than 0.05. The Chi-
square test statistics and the corresponding P-values of the remaining models are as follows: P1
(5.104,0.078), P4 (3.0386,0.386), and P5 (7.8953,0.096). It is clear from these results that model
P4 provides the best fit for the considered data.

8 Conclusions

We extended the RST of Aly (2018) to produce bivariate integer-valued random vectors on Z2.
The proposed Bivariate RST (BRST) is also an extension of the family of bivariate discrete
distributions on Z> of Chesneau et al. (2018). We studied in details our proposed family and
considered, in particular, a number of new bivariate integer-valued distributions on Z2. The
proposed BRST can be applied to other bivariate nonnegative integer-valued random vectors to
produce new families of bivariate integer-valued random vectors on Z>.

As an illustration, we applied the proposed families to a real data set developed based on the
results of the 2019 UEFA Europa League. One of our proposed models provided an excellent fit
of this data.
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1 Introduction

In the line of seminal works of Stein (1956) and James and Stein (1961), there is growing
interest in modifying and generalizing the latter work to bring a new estimator of shrinkage
type in order to outperform the sample mean. Interesting studies may include in the couple of
works done by Baranchik (1970), Efron and Morris (1973), Strawderman (1971), Faith (1978),
Stein (1981), Brandwein and Strawderman (1980), Casella (1990), George (1991), Shao et al.
(1994), Maruyama (2004), Srivastava and Kubokawa (2005), Ghosh et al. (2008), Wells and Zhou
(2008), Ghosh and Mergel (2009) and Arashi and Tabatabey (2010) under different settings.

This work is arisen from the recent study due to Ghosh and Mergel (2009). They considerably
investigated on the superiority conditions of Baranchik-type estimators over the sample mean
in multivariate normal model, with divergence loss. In this paper, a minor extension is then
carried out for another class of shrinkage estimators.

For the precise setup, first of all suppose that X ~ %(0,6211,), where 6 and o2 are both
unknown. Further, S~ (62/(m+2))x2 is independent of X. The aim of this work is to establish
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conditions in which the general class of shrinkage estimators given by
6(X) =X +5g(X) (1)

outperforms X, where g : R? — RP? satisfies some regularity conditions which will be given later.

The outline of this paper is as follows: In Section 2, some preliminary results as well as some
notations are given, while the main results are exhibited in Section 3. Some important remarks
are also given in Section 4.

2 Preliminaries

Before revealing the main results, we express some useful notations. For any x,y € R”, let
C » v
zy=Y xy, lz|>=)
j=1 i=1

Definition 1. A function h:RP — R is said to be almost differentiable if there exists a function
Vh:RP — RP such that, for all z € R?,

h(x+2) — h(z) = /01 2 Vh(z +1z)dt

for (Lebesgue measure) almost all € RP. A function g : RP — RP is almost differentiable if
all its coordinate functions are almost differentiable. FEssentially, V¥ is the vector differential
operator of first partial derivatives with i'* coordinate V; = d/dx;.

Definition 2. A function g : RP — R” is said to be homogeneous of degree —1, if it satisfies

g(2a) = - g(x)
for all real A #0 and for all x € RP,

As an example satisfying the regularity condition in Definition 2, consider the reciprocal
function g(x) = (g(x1),...,8(x,)) where g(x) =x"'. Obviously, g(Ax) = 1/(Ax) = A" g(x).

In this paper, we employ the expectation of divergence loss, which includes Kullback-Leibler
(KL for short) loss and Bhattacharyya-Hellinger (BH) loss, as a measurement. The divergence
loss has been considered by many authors in other contexts. Among others, we refer to Amari
(1982) and Cressie and Read (1984).

Definition 3. Suppose that A (x|0,0°1,) denotes the probability density function of ;,(6,0621,).
For an estimator a of 8, the divergence loss is defined by

Lg(0:a) = (1— Rp/l/lB(:c|0,621p)</1/ﬁ(m|a,Gzlp)dm)

- Ilj(l—exp {_leﬂna—enzb, (2)

where b= B(1—B) and B € (0,1).
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The second equality in (2) is a consequence of Lemma 2.2 of Ghosh et al. (2008). The KL
loss and the BH loss occur as special cases of the divergence loss when f — 0 or f — 1, and
B =1/2, respectively. Some graphical displays are presented in Figure 1, illustrating the relative
behavior of the loss function for ¢ =0.5. In this figure, B varies within the range (0,1), while
la—8||* changes from small to large values across different panes to demonstrate the effect of its

magnitude. As shown, for moderate values of ||a@ — 6||?, the shape of the loss function is clearly
bath-shaped.

Figure 1: Behavior of the divergence loss relative to B and ||a — 6]|>.
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To close this section, note that since || X —0|> ~ 62}(1%, under the loss, it can be directly
concluded that the risk of X is given by

1—(1+b)7P/2

Rﬁ(H,X) = (3)

3 Main results

In this section, we first give sufficient conditions in which the estimator §(X) given by (1)
dominates X for the case of £ = 0?I, (Case I). Also, for the case of the general framework £
(Case II), we give sufficient conditions so that an estimator dominates X.

Case I: (£ = 0?I,, 62 is unknown)

Theorem 1. Assume X ~ A,(0,6%1,) and S~ (62/(m+2))x2 are independent, where 6 and
o? are both unknown. Further, assume that for a given estimator §(X) in (1), g is almost
differentiable and homogenous function of degree —1 satisfying E|(d/OW;)gi(W)| < oo for all
n€R? and fori=1,---,p, where W ~ A,(n,1,/(b+1)) is independent of S. Then, the estimator
(X)) has smaller risk than X, under the divergence loss (2), provided that

2
lg(w)|*+ m' g(w) <0

for all w e RP.

Proof. Let Y = X /o, n=0/0, S* =S/0?. Then, by the homogeneity of g and the inequality
e —e’ > e’(x—y) (x,y € R), the risk difference between X and §(X) is given by

Rp(6:X) ~ Ry(0:8(X)) = 1 |exp (51511 X +59(X) ~ 1% ) —exp (551X~ ) |

> sk oo (o X012 ) (S19X) | +25(X ~0)-9(X)|
=3 [ew (31¥ - al? ) (sPla P 25 <m)-g)] @

Since Y ~ A;,(n,I,) and S* ~ (m+2)~'x2 are independent, and E (S*) = E (S*Z) =m/(m+2),
the right hand side in (4) is rewritten by

s | (<51Y = nl?) ()P 2 ~m)-g(¥)|
= ay  PE (g W)+ 29W)- (W] ()
By the Stein identity, we have
Elg(W)- (W —n)] = ;- E[V-g(W)]. (©

b+1



On shrinkage estimation under divergence loss 35

Substituting (5) and (6) in (4) concludes that

Ay PN E (W)l + 5= v-g(W)

>0 (7)

Rp(6;X) —Rp(0:8(X)) > —

for all @ € R? and for all 62 > 0. Here, we have to show that the inequality in (7) holds strictly
for some 6 and 2. Since P{Sg(X)+2(X —0) =0} =0, the equality in (4) holds only if g(X) =0
(a.s.), that is, 0(X) = X (a.s.). This completes the proof. O

As a supplement, the earlier result can be proposed in a more general situation. In this
regard, we have the following essential consequence.

Theorem 2. Suppose that X ~ A,(0,0%1,) and S ~ (62/(m+2))x% are independent, where 6
and 6% are both unknown. Consider the class of shrinkage estimators

5"(X) = X +cSg(X),
where g is as in Theorem 1. Then, 8*(X) outperforms X under divergence loss provided that

(i) there exists a function h(.) such that, for all x € RP

Slg@IP < hw) < 5 V- g(a),

(1) 0<c<1.

Proof. By the same way as the proof of Theorem 1, the risk difference between X and 6*(X)
is given by

Rp(0:) = Ry(0:8"(X)) > —5ls(b 1) P | g (W) P+ 27 - 9(W)
> T (b 1) e~ DE (W)
>0 (8)

for all ¢ € (0,1]. By the same reason as Theorem 1, the equality in (8) holds for all 8 and for all
c? only if §(X) =X (as.). O

Now, let .(p) be the set of all positive definite matrices of order p.
Case II: (Unknown X € . (p))

In this case, first of all, let n— 1 mutually independent random vectors Z,--- , Z,_j ~ .4,(0,X)
be independent of Z, ~ .4,(6,X), in which p > 3. We deal with a more general type of improved
shrinkage estimators, based on the sufficient statistic (Z,,S), of the form

Y¥(Zy,S) = Z,+ F(Z,,S), 9)
where S = ):;f;} Z;Z;.
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Definition 4. Suppose that A (x|6,X) denotes the probability density function of 4,(6,X). For
an estimator a of 0, the generalized divergence loss (GDL) function is defined by

L
B(1-B)

- (1 ~exp [—?Ha—@”%}) , (10)

where ||a— 0|2 = (a—0)'L ' (a—0).

Lﬁ(@;a) = <1/ JVl_ﬁ(m\@,n_]Z),/Vﬁ(:c\a,n”Z)d:z:)
R?

Theorem 3. Suppose that
E[F'(U,S)F(U,S)] <o

for all @ € R? and for all £ € #(p), where U ~ A,(0,X/(nb+1)) is independent of S. Then,
the estimator v(Z,,S) given by (9) has smaller risk than Z,, under GDL function given by (10)
provided that

2V, - F(u,S)+(n—p+2)(nb+1)F'(u,8)S ' F(u,S) <0,

where Vo, states getting derivative with respect to u.

Proof. By the same way as the proof of Theorem 1, the risk difference between Z, and ~(Z,,S)
is given by

Rp(0:Z,) ~Rg(8:7(2,,5)) = =5 |(1F(Z,,8) [} +2F (2,827 (2, - 0)) e - F1201R) |
(11)

Let V;=Z;/v/nb+1 for i=1,---.n—1, T = Z;;%VjVj’, G(u,T) = F(u,(nb+ 1)T) and A =
Y/(nb+1). Then, the right hand side in (11) is rewritten by

n

5 (nb+ 1) " PRPE[G/(U,T)A'G(U,T) +2G' (U, T)A" (U - 6)] .

By applying Lemma 1 of Fourdrinier et al. (2003), we see that

E[G'(U,T)A'G(U,T)+2G' (U, T)A" (U - )]
<E[2vy-GU,T)+(n—p+2)GU,T)T'G(U,T)]. (12)

Since T = S§/(nb+ 1), the right hand side in (12) is expressed as
E[2vy -F(U,S)+(n—p+2)(nb+1)F'(U,S)S 'F(U,S)]. (13)
From (11) to (13), we have
n 1
Rp(6:2,) ~ Ry (6:1(Z,,8)) >~ (nb 4 1)
xE[2Vy -F(U,S)+(n—p+2)(nb+1)F'(U,S)S'F(U,S)|
>0 (14)

for all @ € R? and X € .(p). By the same reason as Theorem 1, the equality in (14) holds only
it F(Z,,5)=0 (a.s.). O



On shrinkage estimation under divergence loss 37

4 Conclusions

In this paper, we establish the conditions under which a general class of shrinkage estimators
outperforms the consistent estimator of a multivariate normal population mean when using a
divergence loss function. The results obtained apply to both known and unknown covariance
scenarios. Furthermore, our findings extend the earlier work of Ghosh and Mergel (2009) to a
broader class of dominant estimators. The proofs of the proposed theorems are presented in a
more straightforward manner than in the previous reference. This method can also be applied
to exponential-type loss functions, such as LINEX, and reflected normal losses. Importantly, the
conditions for superiority are robust concerning the squared error loss function, which further
validates our derivations, as the divergence loss encompasses the square error loss as a special
case.

4.1 Easy understanding

In conclusion, we provide a simple approach for making decisions regarding the superiority
conditions based on divergence loss. As previously mentioned, the square error loss is a specific
case of divergence loss. It is important to note that the graphs of both losses are parabolic.
Additionally, the graph of the risk of X in Equation (3) also follows a parabolic form (see Figure
2). From a graphical perspective, for any estimator of 6 to be superior to X, it must have a risk
that is lower than that of the parabolic shape. Therefore, we can conclude that determining the
superiority conditions for the proposed shrinkage estimators can be achieved by examining them
under the square error loss. Interestingly, the conditions derived in this study align exactly with
those found in the work of Ghosh and Mergel (2009), as they are the same under square error
loss when b — 0.

Figure 2: Risk of X under the divergence loss.
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Abstract. This paper deals with the computation of Bayes factors (BFs) based on sequential
order statistics arising from homogeneous exponential populations. Explicit expressions for the
BFs are derived from the chi-square and the Poisson distribution functions. Some approximations
for the derived BFs are also proposed. A simulated data set is analyzed using the obtained results.
Open problems are also mentioned. The findings of this paper may be used for assessing evidence
in the available data in various fields such as reliability analyses of engineering systems and life
testing experiments.
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1 Introduction

Let Xj,...,X, be independent and identically distributed (IID) random variables with a common
distribution function (DF), say F, and abbreviated by Xj,..., X, ‘4 F. Denote in magnitude
order of Xj,...,X, by Xj., <--- <X, known as order statistics (OSs). The theory of OSs has
been widely used in literature. For example, in system reliability analyses, lifetimes of r-out-of-n
systems coincide to X,.,, where Xj,...,X, stand for component lifetimes. For more information,
see Barlow and Proschan (1981) and David and Nagaraja (2003) and references therein. There
are some generalizations of OSs such as fractional order statistics and generalized order statistics,
which are useful for providing a framework to unify similar results in the related literature; see
David and Nagaraja (2003) for more information. This paper deals with another unified concept,
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called the sequential order statistics (SOS), which has also a motivation in reliability analyses
of engineering systems. Specifically, when the component lifetimes are 11D, the OSs are suitable
for describing r-out-of-n system lifetime. Here failing a component does not change the DFs of
lifetimes of surviving components. Motivated by Cramer and Kamps (1996), the failure of a
component may result in a higher load on the surviving components and hence causes the lifetime
distributions change. More precisely, suppose that F;, for j=1,...,n, denotes the common DF
of the component lifetimes when n— j+ 1 components are working. The components begin to
work independently at time r =0 with the common DF F;. When at time x;, the first component
failure occurs, the remaining n — 1 components are working with the left truncated common DF
F, at x;. This process continues up to rth component failure and hence the system fails. The
mentioned system is called sequential r-out-of-n system and its lifetime is then rth component
failure time, denoted by X( ) In the literature, (X (1) (n)) is called SOSs. Statistical inferences
on the basis of SOSs have been studied in hterature For example, Bedbur (2010) obtained the
uniformly most powerful unbiased test under a conditional proportional hazard rates (CPHR)
model via a decision-theoretic approach. To describe the CPHR model, let F;(t) = Fy’(z), for
j=1,...,r, where Fy(t) = 1 — Fy(t) is a given baseline DF. In this case, the hazard rate function
of the DF F;, defined by h;(r) = f;(¢t)/Fj(t) for t >0 and j=1,...,n, is proportional to the
hazard rate function of the baseline DF Fy, that is, h;(t) = &;jho(t). See also, Cramer and Kamps
(2001a,b), Beutner and Kamps (2009), Schenk et al. (2011), Burkschat and Navarro (2011),
Esmailian and Doostparast (2014), Hashempour and Doostparast (2017) and references therein.
In this paper, we consider that the DF Fy(r) is the exponential distribution, denoted by Exp(o),
that is,

Fo(t;o):l—exp{—(é)}, 1>0, 6>0. (1)

The problem of hypotheses testing for exponential populations on the basis of s(>2) multiple
and independent SOS samples under the CPHR model via a Bayesian approach is here studied.
The available data are denoted by

x=| i o, 2)

where the ith row of the matrix x in (2) stands for the SOS sample coming from the ith population
1 <i<s. In general, the likelihood function (LF) of the available data (2) reads

s 5l "
.4 - _ I(n+1) > : G (xig)
LF51<i<s, 1 <j<r) = < f xij) ——
< S i) B () (3)

where F' j[i] (x) = l—Fj[i] (x), and F j[i] calls for the common DF of the component lifetimes in the
ith sequential r-out-of-n sample. For more details, refer to Hashempour and Doostparast (2017).
Upon substituting (1) into (3), the LF (3) under the CPHR model reduces to

L(o,a;x) = (F(l;(iJrr—il—)l)y (ﬁ;) exp{ Z Z (xljmj)} (4)

1
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where 6= (01,...,0,)7, o= (ai,...,,)" andm;=(n—j+1)a;— (n—j)ojsq for j=1,...,r, with
convention @, = 0. For the special case 61 = --- = 6, = 0, the LF (4) simplifies to

L(o, a:x) = (F(Fn(fi)l)) (,Ul aj>s (;)sreXP{_ (—lzgle””f> } , (5)

where o is the common unknown mean of the baseline exponential DF in (1). In what follows,
the following lemma is utilized.

Lemma 1. Let X(l) (‘;) be SOSs under the CPHR model with the baseline Exp(o)-distribution.
Then, forr=1,.

P

Z n—j+1)e; IJ—ZX]mJNgamma(rG) (6)
where Djj = X;; — X; j— 1, for] =1,...,r, gamma(a,b) calls for the gamma distribution with density

f(xa,b) = (T (m)b“) L exp{— (X/b)}’ Jor x>0,

and I'(a) :/ X Ye™dx is the complete gamma function.
0

For more details, refer to Hashempour and Doostparast (2017). To the best of the anthers
knowledge, Bayes factors (BFs) on the basis of SOSs has not been studied in the literature.
This paper deals with this problem by emphasizing on SOSs coming for exponential baseline
distribution under the CPHR model. So, the rest of this paper is organized as follow: In Section 2
, areview on BF and Bayes is given. A general form for BF is also derived for various hypotheses.
In Section 3, BFs for SOS coming from exponential populations under the CPHR are provided.
In Section 4, some approximations for the derived BF are proposed. These approximations
are useful for numerical evaluations of the BFs specially in big data analyses. In Section 5,
simulation studies based on SOS are provided. In Section 6, a real data set on failure times of
aircraft components for a life test is analyzed. Section 7 concludes.

2 A review on BF

The BF is a Bayesian approach alternative to the frequentest one for comparing multiple can-
didate models based on the available data, say x.

2.1 BF for simple hypothesis

Presence of nuisance parameters case the definition of the BF vague and complicated. Thus, in
what follows, we consider two cases. As mentioned by Cowles (2013), in the Bayesian analysis
when there are only two possible states of the world, M; and M, (or equivalently, two simple
hypotheses H; and H,), one may interest to compare the models with the prior probability
n(M;)=1—n(M,). Thus, the prior odd in favour of M;(or H,)is ©(M;)/m(M>) (or m(H,)/m(H>)).
The posterior odd in favour of a model (or a hypothesis) is derived as the analogous ratio of
posterior probabilities: w(M;|x)/n(M,|x) (or m(H,|x)/7(H;|X)).
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The BF in favour of a model or hypothesis is the ratio of the posterior odds to the prior
odds. Thus, the BF in favour of M; versus M, is

(M )7 (M)
BF = =0 m (D) @

The BF (7) is a summary of the evidence provided by the data x in favour of one scientific theory,
represented by a statistical model, as opposed to another one. The BF usually is reported on
the log,, scale. A review paper by Kass and Raftery (2012) recommends the interpretations of
intervals of values of the BF as in Table 1.

Table 1: Interpretation of the strength of evidence
BF Evidence against H;

0 <BF < % Strong against

% < BF < % Substantial against

% < BF <1 Barely worth mentioning against
1<BF <3 Barely worth mentioning

3 < BF <10 | Substantial

10 < BF < o | Strong

Let f(y|M;), (i=1,2) stand for the probability density function (PDF) of y given the ith
model. Then, the BF (7) for comparing to models M; and M, or equivalently for testing Hj.
The model M| is correct against the alternative H,. The model M, is correct, is simplified as

£y

pp — TORI0R) _ [ (y1M1) @®
TI(M, :
M ()

Equation (8) means that, the BF is the ratio of the likelihoods under the two simple hy-
potheses. In other words, it is the evidence contained in the data alone (uninfluenced by the
prior) in favour of one model over the other.

Example 1. On the basis of the observed data x in (2) and under the CPHR model, described in
the preceding section with the baseline Exp(o)-distribution, consider the problem of hypotheses
testing

H :0=07 v.s HQZG:Gz, (9)

where 0] and 0, are known positive constants and 0 < 0] < 0. Equations (5) and (8) get

L . sr 1 1 s r
BF = (0132) = (Gz) expq — ( - > Z Xijmj
L(02:x) o} o1 02/ 30

- (@) ol ) Eeen).

Note that, BF (10) in the simple versus simple case is the weight of evidence contained in the
data alone in favour of M| versus M,. Thus, it ignores any information provided by the priors.
For more details, see Hashempour and Doostparast (2016, 2017).
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2.2 BF for composite hypotheses

In presence of unknown parameters, say 0, the BF given by (7) is not useful. For these cases, the
marginal likelihoods may be used. The numeric value of a marginal likelihood is determined by
the data and the entire Bayesian model (the form of the likelihood and all levels of priors). To do
this, suppose we wish to compare two families of models, denoted by .#; and .#5, based on the
observed data y. The two families may have different likelihoods, different numbers of unknown
parameters, and so on. The BF in the general case is the ratio of the marginal likelihoods under
the two candidate families of models. Let 6; (i = 1,2) denote parameters for the family .#;. The
marginal likelihoods under the family .#; is defined by

P(yI.46) = [ POYI6)P(6.4)d8; (11)

Therefore, (8) motivates us to define the BF as

P(y|l-#1)
BF = ——~*. 12
Pyl ) 12
The suggested BF (12) cannot be interpreted as the evidence in the data alone, since clearly
the priors affect each marginal likelihood and therefore the BF itself. For more details, refer to
Lewis and Raftery (1997) and Klauer et al. (2024).

3 SOS-based BF for exponential populations

In general, we are interested in comparing composite hypotheses H| : ¢ € Q; against the alter-
native Hy : 0 € Qy where Q is the parameter space, Q =Q UQ, and Q; NQ,; = 0. Here “0”
stands for the empty set. Suppose that 7(o) is the prior density on the parameter space Q. To
derive the BF on the basis of data x in (2), assume that the parameter vector « in (4) is known,
and it is suggested to consider the conjugate prior distribution for the scale parameters o as
o ~ IG(a,b), which is the inverse gamma distribution with shape and scale parameters a and b,
respectively. The PDF o is defined as follows:

b b
n(o):r(a)o(““)exp{— ()} 6>0, a>0,b>0. (13)

(e

Equations (4) and (13) imply the posterior distribution of ¢ given x as

.
G|x~1G<ai+r,injmj+bi>, i=1,...,s. (14)
j=1

Remark 1. Under the squared error loss (SEL) function, that is, L(6,8) = (8 — 0)?, where 6
is the parameter of interest and & is an estimate of 8, the Bayes estimate of the parameter 0 is
the posterior mean. Thus, the Bayes estimate of G is

A r6 +b

e 15
B a+r—1 (15)
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where 6 is the ML estimate of 6 given by 6 =Y. x;jm;/r=Y_(n— j+ 1)a;D;;/r. Note that the
Bayes estimate (15) is a weighted mean of the mean of the prior (13) and the ML estimate above;
that is, 6g = E(0)w+ (1 —w) 6, where w= (a—1)/(a+r—1). Forr=nand oy =---= 0, = 1,
we have 6, =Y xij/n and 6p = (Lj_; xij+b)/(a+n—1), which are, respectively, the well-known
ML and the Bayes estimates of the exponential parameters on the basis of a random sample of
size n; see, for example, Lawless (2003) and Hashempour and Doostparast (2016).

Proposition 1. Let m(0) and m(o) be two proper densities over Q) and Q,, respectively. Then
the BF for Hy : 6 € Q1 against Hy: 6 € £ is

(P(XZ(J* e ZbTQ[l_l])> <P(x2a2 € 2b2~'Q[2_1])> (16)
P(ta; € 2;,;.9[;15 P(tza, € 26107

b - T (03"
1

[(an)T(a3)by* (b7)°

where 26707 = (207607110 € Q}, 26,00 = (20,671 : 0 € Q}, b = b+ ¥ ¥ xiym; and
a; =a;i+sr, for i=1,2 and xy stands for the chi-square distribution with v degrees of freedom.

Jo, L(olX)m(c)do Jo, m(o)do

oA (H;ZI O‘j)s(nleé)re"?{ rio Xj- ( Gi )}r(Z)Gi(mH)
As( j= 1aj)x(n}?:1 s) eXP{_):§:1):j: (lg1'>}r}é422)67(02+1)
oo{=(%)}40 o g Ve (- (&) }ao
exp{— (‘Ll) }dc Jo, mo‘*(“l*l)exp{f (%1) }do
Ta )b”' Jo, 0 —(ai+sr+1) exp{—l ():f,lx’-,lx,-jmj-l-bl)}da
I(a))b5 o jg —(ay+sr+1) eXP{_*<Z; IZJ 1x,jmj—|—b2>}d6
o s3]
iy e (1)

a s , u2+sr
T(a)T(ar +57)b1 (b + X3y Xy xijm,)) s €Q1) Pl € 0)

BFy = <‘le L(o|x)m Ec)dcf) (fgz ﬂz(c)dc>
J

Proof. From (12), (13), and (14), the BF of H, against H; is
Jo

+
Pan)T(ar-+ 5% (b1 -+ T X vigmy) VP dertor) €.02) Pl € )

(ax)T(a})b (65) [ Plxoa; € 267.0571) (P(;Qazesz ol ])>
D(an)T(a3)b5 (67) \ Plroes € 26505 ) | \ P(xaa, €201.007Y)

[ POeg e 261071 ( P(22, € 2b2.§2[2_1]))
P(2a; € 265.95°") ) \ P(220, € 261271
Cla)T(ai )by (53)2 B
[(ay)T(a5)b3? (b7)"

where A =

In what follows, for the proper prior m;(c)(i = 1,2) in Proposition 1, the truncated inverse
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gamma distributions to the parameter of spaces is assumed, that is,

b b 1
) — 7([1,'4*1) N il i =1.2 Q..
(%)= Flay® e"p{ <c>}xfg,m<ai,bi>do’ =12 ol

A general form for the SOS-based BF in (16) is derived in terms of the chi-square DF. For
some common hypotheses, the proposed BF in (16) may be simplified. Similar to Lehmann and
Romano (2005, Ch 4.), the following hypotheses are considered and the corresponding simplified
BFs are displayed in Table 2:

Hy:0<oyvsHy:0>0 (17)
Hs:0>o0yv.s Hg: 0 < 0y (18)
H;,:0=0pv.s Hy:0 > 0y (19)
Hy:0=o0pv.s Hp:0 <0y (20)
Hi:00<o0<o,vsHp»:0>0,0r <0 (21)
Hsz:0>0oro<0o;vsHy:01<0<0, (22)
Hi5:0 =0y v.s Hig: 0 # 0y. (23)
Here, 0y, 01, and 0, are known positive constants and o] < 0. In Table 2, we have
A= (T(a)Tlai)by! (3)%) / (TlanT(@s)bg: (7))
and
B = (T(a)(b3)%) / (D(a3)bg?).
and Fy stands for the DF of the chi-square distribution with v degrees of freedom.
Lemma 2 (Johnson et al. (1994)). Fort >0,
=L
va(t)—l—exp{—z};) 2, (24)

Lemma 2 gives an alternative method for the expression of the BFs associated with the
hypotheses (17)-(23); see Table 3.

4 Approximate BF

The BFs in (16) and Table 2 involve the DF of the chi-square distribution. In this section, some
approximations for the BF defined by (16) are proposed, which may be useful for numerical
evaluations indeed in big data analyses. To do this, some lemmas are given. The first lemma is
based on the cumulative distribution function (CDF) of the standard normal CDF, that is,

s
B(x) = [ gz ol 2 (25)
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Table 2: BFs
2bT
1=Fy a*(?‘) Fp, (2:2)
BF3’4:A <1F2 1(2b<)1)> < X2ay 21702
X2aq \ o) 752u*< )
1-Fy,, (22) xa*(a )
BFsc=A 120y Zb% F2 21:
1P, (G) 0, ()
Fp,, (32)
BF; 3 = o exp{ ( 12 1x,~jmj)} ( X2ay 2;;))

2by

' 1=Fyp,,, (5F)
BFo.10 = G%,exp{—cio ( i1 Z;‘:lxijmj)} (%)

1=Fy, . (

(g (2 2172 2,
XZa (7)_ XZa (Tz) l_FXQ ( )+ 12“2( )
BFII,IZZA 7 r 2b) 2b2
XZa] Gl ) xZa] ( [+ ) 1- FJ{Q *( ) )J" l2a2( o) )
_ i 2y 2 2
1 xZu* ( 9] ) FXZ(J* ( o) ) Flzaz( 0'12 ) Flzaz( 0'22 )
BF13,14:A _F (21)1 )+ (ﬂ) %3 25
%2ay \ o1 /T 22a N0y Fl2a§ (Tl)*szl,E (5F)

BFis16 = gy exp{ % ( i:IZj:lxijmj)}

Lemma 3 (Johnson et al. (1994), page 426). As v — +oo, we have for allt >0

(1) B ~® (1),
(II) Fy (1) = ®(V2t—2v—1).

In Lemma 3, the second approximation is better than the first one; see, for example, Johnson
et al. (1994). Meanwhile, we provide some approximations for BF with both of them. So, Lemma

3 gives
of 2 g [ 5 (o
Bl _ 4 4ai i B N AR i 26
11,12 — ® 2;711,%1 ® 2:—217%1 2;—;72@ 2:—372% ’ ( )
Vaa )~ VAay 1-& l4a; T 24@3
4b T ab ¥
q)(\/:l— 4a1—1>—CI>(\/:2]— 4a1—1>
BFIN, = A
11,12 CI)( 4b1_\/4ﬁ)—q)( 4 /1 —])
o 1 (e} a1
-0 (%~ Vi 1)+ o (/5 Vaa 1)
" ; (27)
l_q,( ‘gvz_\/m>+q>( - 43—1>
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Table 3: BFs based on Lemma 2

® ﬁi b i
exp{ Zi]}z?:lol (GI-(.)) l—eXP{_hiz}Z('lz_l (67‘0)1
BF34=A - : P
P ~1 (e )t %)
exp{—%}zgo c,(v) lfexp{ }21201(61'!
G
by i b* ai-1 (b))
B —a | SPLEITS ! l’e"p{’?l}z"zl° i
56 = ; '
, b’ﬁ a’zf—l (%),‘ | by ay—1 (%)l
€XPY 5y Yo —a 7CXP{770}):’.:0 "
by i
b ar—1 (55)
1—exp -2 Z*go 1,
BF78* Gvrexp{ %0( lezszlx”mj)} { 60} i b’* .
b2 aéfl ((T(z))l
1—exp ~5 Zi:o il
by i
by | catg 1 (B
BFQ,]O o exP{ 0o ( 12] lxljmj)} b* ai—l (i—i)[
ol 8} &
¥ by
o 1 () o | a1 ()
exp{ I}Z, 1o 4 —exp{—;lz}):,-:lo i
BFi11p=A (ar A
b 1oy b 2
exp{- 2oty S —ep{ -2 5y 5
by i bayi
b “1 (R) b -1 (5y)
" l+exp{ *2}2;20 6111 7eXp{7<’%}ZZO 6'2'
bE . by .
* al—1 ( *2)1 b3 a3—1 (72)1
1+exp{ } Y20 4 *eXp{ft%}Zii" G
T by i
N 1) w1 ()
1+exp{—bf']}2?:]01(o,-71;)—exp{—%} ?:101 (Gilz)
BFi314=A J o)
, by a1 (0'1 )i by ap—1 (le)l
1+exp{fT}Zi:0 } *eXP{*j}Zizﬂ i
by \i by )i
b _1 (&y) b -1 ()
i
pE Y at—1 ?)i b5\ wab—1 (fyi)i
exp{—g%}ziio i —exp{—%}):iio i
__ B 1 K .. .
BFis 16 = ?afexP{_a Yizi ZJ—IXIJ’”/)}
ﬁ_ * 2b
| —® % 2a] P 6—0272(12
dat VAa,
BF[I] _A : \/@ (28)
3 2by 2b% ’
21 _ng, 25 _ogx
= 2a
1—® OT [0} % 2
a *
| N
—a(J% _ A= 4by
1) % 1 ® (@ — VAT
BFy, =A 4b )
; ] 4b3
o(a ) ) oy ya)
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The next lemma presents another approximation the CDF of the J, distribution base on an
infinite series. So, the CDF can be approximated by computing the summation for some finite
elements.

Lemma 4 (Johnson et al. (1994)). For x>0,

2021)7 & Lot
r(¥) ;:(_1)(v-%2nzﬁr

=0

Fy, (1)

The proposed BFs can be approximated by Lemma 4. For example,
ELI NE e (i,”ﬁ_(;)”ﬁ
T(ay) =i=0) " ir(aj+i) o1 0

Hap N (_Z)i(Zbl)Hal 1 i+ay 0 i+ay

I'(a;) Zi:() i!(a1+i) ol T \o

2 N (=2)i(2by) 92 1 i+ay 1 i+ay

I+ T(az) Lilo i!(az-ii) (6) o (a)
| 2a’2‘ N (_Q)i(zb;)pr“; | i+a’§ | i+a§ ’
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where N is a large number. Other approximations methods such as the Laplace method can
be used to approximate the F-distribution function; see, for example, Johnson et al. (1994). A
similar approach then is used to obtain an approximate BF based on SOSs.

BFii1, = A

X (31)

5 Simulation studies

To examine the accuracy of the proposed BF, we performed a Monte Carlo simulation study
in the well-known statistical software R. For generating an SOS-sample from the exponential
population with ¢ = 1 under the CPHR model, an algorithm proposed by Cramer and Kamps
(1996) was performed. Here, we considered the hypothesis Hyj : 01 <6 <0y v.s Hy: 0 >
Op or 0 < O].

In Table 4 and Figure 1, the mean of the BFs based on 10* iterations for some selected
reduces of n and r are displayed. Appr 1 and Appr 2 stand for the approximations based on
Lemma (3) and (4), respectively.

Table 5 and Figure 2 represent the mean absolute among approximate and exact BFs.

Empirical results are

 increasing r more effective than increasing the copy s;
o approximations tend to the actual value as r/n increasing;
e Appr 1 dominates Appr 2;

o Asn— e and r/n goes to unify, the BF determines successfully the correct hypothesis.
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Table 4: Exact values and the corresponding approximates for the BF on the basis of a SOS-
sample from the exponential population under the CPHR model for some selected values of n
and r.

Exact Apprl Appr2 Exact Apprl Appr2

3 1.9843 2.0852 2.6624 3 1.3629 1.4212 1.7790
4 1.5754 1.6474 2.0768 4 0.8295 0.8679 1.0981
5 1.2117 1.2621 1.5760 5 0.6116 0.6389 0.8052
6 09860 1.0200 1.2533 6 04283 0.4472 0.5619
7 0.6417 0.6731 0.8562 7 02965 0.3103 0.3921
8 0.5612 0.5880 0.7453 8 0.2345 0.2451 0.3080
9 0.3924 04116 0.5234 9 0.1707 0.1780 0.2224
10 0.3719 0.4053 0.4997 10 0.1221 0.1271 0.1579
11 0.2948 0.3078 0.3863 11 0.1067 0.1109 0.1371
12 0.2341 0.2442 0.3054 12 0.0791 0.0821 0.1010

(a) n=20,r=10 (b) n=20,r=15

Exact Apprl Appr2 Exact Apprl Appr2

3 25126 2.6767 3.5636 3 24105 2.5696 3.4268
4 24532 25998 3.4039 4 24171 2.5623 3.3578
5 23153 24416 3.1484 5 2.1453 2.2650 2.9317
6 19026 2.0020 2.5661 6 1.8881 1.9863 2.5442
7 1.7864 1.8722 2.3728 7 1.7795 1.8660 2.3694
8 1.5225 1.5929 2.0113 8 1.5757 1.6483 2.0789
9 1.3309 1.3891 1.7427 9 1.3484 1.4092 1.7730
10 1.1886 1.2388 1.5503 10 1.1382 1.1905 1.5024
11 0.9422 09870 1.2512 11 1.0839 1.1308 1.4183
12 0.8756 0.9137 1.1486 12 0.9575 0.9928 1.2282

(c)n=20,r=5 (d)yn=10,r=5

6 Aircraft data set

To demonstrate the results obtained in the preceding sections, we present an illustrative ex-
ample. Smith (2002) gave failure times of aircraft components for a life-test, originally due
to Mann and Fertig (1973). In the test, n = 13 components were placed in a Type-II cen-
sored life test in which the failure times of first 10 components to fail were observed (in hours)
as 0.22,0.50,0.88,1.00,1.32,1.33,1.54,1.76,2.50,3.00. Following Hashempour et al. (2019), it is
assumed that the lifetimes of the components are IID with an exponential distribution. We
considered two simple hypothesis tests based on the ML estimate of the ¢ in (15). Also, we ran
the SOS example for r =3,4 and s = 3,4,5. The BF is approximated using (31) for the failure
time of aircraft components. The results on Table 6 show that as r or s increases, BF determines
the correct hypothesis more successfully.
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Table 5: Absolute errors of the approximations in Table 4 for the BF on the basis of a SOS-
sample from the exponential population under the CPHR model for some selected values of n
and r.

Apprl  Appr2 Apprl Appr2

3 0.1025 0.6823 3 0.0631 0.4197
4 0.0743 0.5052 4 0.0420 0.2717
5 0.0586 0.3724 5 0.0319 0.2030
6 0.0496 0.2989 6 0.0206 0.1361
7 0.0327 0.2175 7 0.0148 0.0978
8 0.0279 0.1867 8 0.0113 0.0754
9 0.0203 0.1334 9 0.0080 0.0534
10 0.0147 0.1297 10 0.0056 0.0373
11 0.0141 0.0936 11 0.0048 0.0318
12 0.0109 0.0732 12 0.0035 0.0231

(a) n=20,r=10

Apprl Appr2

(b) n=20, r=15

Apprl Appr2

3 0.1661 1.0566 3 0.1610 1.0216
4 0.1484 0.9558 4 0.1470 0.9456
5 0.1280 0.8377 5 0.1215 0.7911
6 0.1010 0.6677 6 0.0998 0.6605
7 0.0873 0.5903 7 0.0881 0.5940
8 0.0727 0.4928 8 0.0749 0.5070
9 0.0632 0.4154 9 0.0653 0.4283
10 0.0565 0.3698 10 0.0581 0.3716
11 0.0493 0.3151 11 0.0536 0.3444
12 0.0436 0.2808 12 0.0469 0.2913
(¢) n=20,r=5 (d)n=10,r=5

7 Conclusion

This paper focused on calculating BFs using sequential order statistics arising from homogeneous
exponential DFs. Also various approximations for these BFs were proposed. A simulation study
was conducted, and real data set was illustrated. The discoveries presented in this paper have
practical applications in evaluating evidence in various domains, including reliability analysis of
engineering systems and life testing experiments.
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Figure 1: BF and criteria.

References

Balakrishnan, N., and Kateri, M. (2008). On the maximum likelihood estimation of parameters
of Weibull distribution based on complete and censored data. Statistics and Probability Letters,
78, 2971-2975.

Barlow, R.E., and Proschan, F. (1981). Statistical Theory of Reliability and life Testing: Prob-
ability Models. Springer, Second Edition, New York.



54 Hashempour, M. and Doostparast, M.

o —6— Exact < 79 -0 Apprl
B -0 Apprl ° 1 -0- Appr2
n | --0-  Appr2 B -9 Appr3
A o'._ -9 Appr3 .
o - »
— ° o
o
3] ©
(] =
LL [J]
- o~
[%] = o o
9 (@)
> .
3 .
] °
- "
c o.
o °.
o, %0
%o o
Oo
S fooo0o0o0c8869
T T T T T T T 17171
3 5 7 9 11
S S

(a) n=20,r=15

v P —— Exact o P -0 Apprl
D -0-  Apprl - -0 Appr2
o | o- Appr2 o -©- Appr3
3 ] 9 - ©- Appr3 o | °
. . (<] .
S 3 B
g 2 7°i°o°‘- 8 o | o
L °5 5 I3 © °,
8 o] 2 a
RN S O = ] o
© \8 . o o,
m
0 8% °q
— ] . N
. S o
oo %o,
%o
o ] 00oqg
= $ 2 00000000009
TTT T T T T 17T
3 5 7 9 1 3 5 7 9 1
S S
(b)yn=10,r=5

Figure 2: BF and criteria.

Bedbur, S. (2010). UMPU tests based on sequential order statistics. Journal of Statistical Plan-
ning and Inference, 140, 2520-2530.

Beutner, E., and Kamps, U. (2009). Order restricted statistical inference for scale parameters
based on sequential order statistics. Journal of Statistical Planning and Inference, 139, 2963—
2969.

Burkschat, M., and Navarro, J. (2011). Ageing properties of sequential order statistics. Proba-
bility in the Engineering and Informational Science, 25, 449-467.

Cramer, E., and Kamps, U. (1996) Sequential order statistics and k-out-of-n systems with se-



Evaluation of evidences for dynamic systems based on Bayes factors with an application 55

Table 6: Approximations of the BF for failure times of aircraft components.
H vsH, 1 s BF
H:0=5 3 3 2112
Hy:0=6 4  2.649
5 6.235
3  4.886
4 13.537
5 16.942
H:0=5 3 3 10.784
4
5
3
4
5

Hy:0=1 22.507
81.136
49.640
301.139
463.789

quentially adjusted failure rates. it Annals of the Institute of Statistical Mathematics, 48,
535-549.

Cramer. E., and Kamps, U. (2001a). Estimation with sequential order statistics from exponential
distributions. Annals of the Institute of Statistical Mathematics, 53, 307-324.

Cramer, E. and Kamps, U. (2001b). Sequential k-out-of-n systems. In N. Balakrishnan and E.
Rao, editors, Handbook of Statistics, Advances in Reliability, volume 20, Chapter 12, 301-372.

Cowles, M. K. (2013). Applied Bayesian Statistics With R and OpenBUGS Examples. John
Wiley & Sons, New York.

David, H. A., and H. N. Nagaraja (2003). it Order Statistics. John Wiley & Sons, New York.

Esmailian, M. and Doostparast, M. (2014). Estimation based on sequential order statistics with
random removals. Probability and Mathematical Statistics, 34, 81-95.

Hashempour, M., and Doostparast, M. (2016). Statistical evidences in sequential order statis-
tics arising from a general family of lifetime distributions. Istatistik: Journal of the Turkish
Statistical Association, 9, 29-41.

Hashempour, M., and Doostparast, M. (2017). Bayesian inference on multiply sequential or-
der statistics from heterogeneous exponential populations with GLR test for homogeneity.
Communications in Statistics- Theory and Methods, 46, 8086—8100.

Hashempour, M., Doostparast, M. and Velayati Moghaddam, E. (2019). Weibull analysis with
sequential order statistics under a power trend model for hazard rates with application in
arcraft data analysis. Journal of Statistical Research of Iran, 16, 535-557.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions.
John Wiley & Sons, Inc. Volume 1. Second Edition, New York.



56 Hashempour, M. and Doostparast, M.

Kass, R. E., and A. E. Raftery. (2012). Bayes factors. Journal of the American Statistical
Association, 30, 773-795.

Klauer, K. C., Meyer-Grant, C. G. and Kellen, D. (2024). On Bayes factors for hypothesis tests.
Psychonomic Bulletin and Review, 32, 1070-1094.

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. 2-th Edition, John
Wiley & Sons, Hoboken, New Jersey.

Lehmann, E.L., and Romano, J. (2005). Testing Statistical Hypothesis. 3-th Edition, Springer,
New York.

Lewis, S. M. and Raftery, A. E. (1997). Estimating Bayes factors via posterior simulation with
the Laplace-Metropolis estimator. Journal of the American Statistical Association, 92, 648—
665.

Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining Weibull confidence bounds and
tolerance bounds based on best linear invariant estimates of parameters of the extreme value
distribution. Technometrics, 15, 87-101.

Schenk, N., Burkschat, M., Cramer, E. and Kamps, U. (2011). Bayesian estimation and pre-
diction with multiply iype-II censored samples of sequential order statistics from one- and
two-Parameter exponential distributions. Journal of Statistical Planning and Inference, 141,
1575-1587.

Smith, P. J. (2002). Analysis of Failure and Survival Data. Chapman & Hall/CRC, New York.



Stochastic Models in Probability and Statistics g( \ /(}l{g’f
Vol. 2, No. 1, 2025, pp. 57-74. Research Article J//-J LY

Log transformed transmuted exponential
distribution: an increasing hazard rate
model to deal with cancer patients data

Md. Tahir*, Sanjay K. Singh and Abhimanyu Singh Yadav

Department of Statistics, Banaras Hindu University, Varanasi, India

Email(s): tahirmansori@gmail.com, singhsk64@gmail.com, asybhul(0@gmail.com

Abstract. In this paper, we introduce a novel distribution called the log transformed trans-
muted exponential (LTTE), which is derived by applying a log transformation to the transmuted
exponential distribution as the baseline model. We derive several key mathematical and statis-
tical properties of the LTTE distribution, including its moments, quantile function, skewness,
kurtosis, reliability function, and hazard rate, along with their respective shapes. The maximum
likelihood estimation method is used to estimate the parameters of the distribution. The practi-
cal applicability of the LTTE distribution is demonstrated by fitting it to three real-life datasets
related to cancer patients. The results indicate that the LTTE distribution offers a superior fit,
as evidenced by better values of AIC, BIC, and the Kolmogorov—Smirnov (KS) statistic, when
compared to other existing lifetime models.

Keywords: Maximum likelihood estimation, Moments, Transmuted exponential, Log transformation.

1 Introduction

It is an indisputable fact that the world is facing an epidemic of noncommunicable diseases,
with cancer cases continuing to grow at an alarming rate. Cancer is currently ranked as the
second leading cause of death, following cardiovascular diseases; see Jemal et al. (2008). The
GLOBOCAN 2018 report recorded 18.1 million new cancer cases and 9.6 million cancer-related
deaths globally. Emerging challenges such as rapid urbanization, population aging, unhealthy
lifestyles, and indoor and outdoor air pollution are contributing to the growing cancer burden
worldwide, particularly in middle and low-income countries, for example, India. According to
the WHO 2020 ranking on cancer burden, India ranks third in terms of new yearly cancer cases,
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following China and United States. The Indian Council of Medical Research’s National Cancer
Registry Program (ICMR-NCRP), an initiative by the government of India to estimate cancer
incidence in the country, reported 1.39 million new cancer cases in 2020 and 1.46 million in 2022.
The GLOBOCAN projection estimates that cancer cases in India will rise to 2.08 million by 2040,
representing a nearly 50% increase from 2020, Sathish Kumar et al. (2022). Among all the cancer
cases, Breast cancer is the leading cause of cancer incidence and mortality in India, accounting
for 13.5% of new cases and 10.6% of cancer-related deaths in 2020, Mehrotra and Yadav (2022).
Urban factors such as sedentary lifestyle, high obesity rates, delayed marriage, and childbirth,
and minimal breastfeeding contribute to its higher burden in urban areas. Another type of
hazardous cancer is bladder cancer which ranks as the ninth most common cancer, representing
3.9% of all cancer cases in India, Prakash et al. (2019). It is primarily linked to tobacco use
and exposure to industrial chemicals. Also, leukemia, a cancer of the blood-forming tissues,
compromises the body’s ability to fight infections. It accounts for 27% to 52% of childhood
cancers in males and 19% to 52% in females across various population-based registries, Bhutani
et al. (2004).

With such a large number of cancer cases being reported, there is a vast amount of data
available to perform statistical analyses to identify root causes and develop better treatments
for cancer patients. This large-scale data can be effectively analyzed with the help of statistical
models, which play a critical role in data interpretation. Statistical models help in quickly and
accurately gaining information about the population, often at a lower cost. Once a model is
identified, inferences can be drawn from the sample data to understand the broader population
trends. Therefore, the development and construction of suitable models are essential for solving
complex real-world problems, such as cancer data analysis. Many statisticians have developed
various models to address the data from different types of cancer, such as breast cancer, bladder
cancer, and leukemia, namely, Al-Kadim and Mahdi (2018) developed the exponentiated trans-
muted exponential model for analyzing breast cancer survival times, outperforming models like
log normal, log logistic, and exponential. Khan et al. (2013) proposed the transmuted inverse
Weibull model for bladder cancer data, showing strong performance compared to other models.
Kumar et al. (2015) introduced the DUS exponential model, which surpassed the transmuted
inverse Weibull and other models. Elbatal et al. (2013) developed the transmuted general-
ized linear exponential model for leukemia, enhancing the understanding of survival patterns in
leukemia patients.

In this discussion, we will explore some of the statistical models developed for analyzing
various types of cancer data and their applications. However, it is important to note that not
every model is always perfectly suited to real-life phenomena. This is because real-life situations
are dynamic and subject to change over time and several inherent factors may influence the
outcomes. These factors may include shifts in environmental conditions, advances in medical
treatments or changes in patient demographics and lifestyles. As a result, existing models may
not always capture the complexities or evolving trends inherent in these phenomena. Given these
challenges, there is an ongoing need to update or refine existing models to ensure they accurately
reflect current realities. In some cases, this might involve modifying an existing model to account
for new factors or changes in the underlying data. In other cases, the development of entirely
new models may be necessary to address the limitations of current models and improve their
predictive accuracy and applicability. With this motivation in mind, the present study aims to
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develop a new statistical model that can effectively analyze data from multiple types of cancer,
namely, breast cancer, bladder cancer, and leukemia. The goal is to create a model that not
only fits the unique characteristics of these cancer datasets but also outperforms many existing
models in terms of different model comparison criteria (e.g., AIC, BIC). By doing so, this study
seeks to contribute to more effective analyses of cancer data, leading to better insights into the
survival patterns, risk factors, and treatment outcomes for cancer patients across different types
of cancer.

In the field of statistical modeling, numerous methodologies have been proposed to create
new distributions by modifying or extending an existing baseline distribution. These approaches
often involve introducing additional parameters or applying transformations to the baseline
distribution, allowing for greater flexibility and adaptability to a wide range of real-world data
scenarios. The motivation behind these methods is to capture the complexities and nuances
of different types of data that cannot be adequately modeled by standard distributions alone.
Some common techniques include applying a parameterized transformation to the cumulative
distribution function (CDF) or probability density function (PDF) of the baseline distribution,
compounding it with another distribution or incorporating additional shape or scale parameters.
Few of them are discussed here; namely, Gupta et al. (1998) proposed a method for generalizing
the existing distribution by taking power of the CDF of any baseline probability distribution.
Verma et al. (2024) has also proposed a new distribution using the generalization technique.

In recent years, various transformation techniques have been introduced to develop new prob-
ability models. The quadratic rank transmutation map (QRTM) technique is widely used but
often increases computational complexity by adding parameters; see Shaw and Buckley (2009).
In contrast, the DUS transformation technique, introduced by Kumar et al. (2015), enhances
baseline distribution flexibility while remaining parsimonious in parameters, reducing estima-
tion complexity. Similarly, the log transformation technique proposed by Maurya et al. (2016)
combines parameter parsimony with increased distributional flexibility. These advancements
simplify parameter estimation while maintaining robust modeling capabilities.

The primary objective of this article is to introduce a novel probability distribution, termed
the log transformed transmuted exponential (LTTE) distribution. This new model is derived
using the log transformation technique, which has been recognized for its ability to enhance
the flexibility of baseline distributions while maintaining parameter parsimony. Specifically, the
LTTE distribution is developed by applying the log transformation to the transmuted exponen-
tial distribution, which serves as the baseline. The transmuted exponential distribution (see
Owoloko et al. (2015)) is a generalized version of the standard exponential distribution, intro-
duced to provide greater flexibility in modeling data. This distribution is obtained by applying
the QRTM to the exponential distribution, thereby adding a single parameter that enhances its
ability to capture diverse data behaviors. The CDF and PDF of this distribution are given by

G(xA,00) = (1—e %) (1 +ae*“) 7

and
g, o) = e M (1 —a+2ae‘“> . x>0,A>0,]0 <1,

respectively.
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Now by considering the above defined base line distributions, the logarithmic transformed
transmuted exponential distribution is given with the following CDF and PDF

1
F) =1 los [2— (1 —e*“) (1 +ae*“>} :
and
Ae M (1 — o+ 206 )
f(X) = ) "y )
2—(1—e**)(14+ ae*¥)]log2
respectively. The above proposed distribution is denoted by LTTE(x; a, A), where a and A are

x>0,A>0,]al <1,
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Figure 1: PDF of LTTE for some selected values of 1 and a.

the shape and scale parameters, respectively. The shape of the PDF of the proposed distribution
is presented in Figure 1. By leveraging the properties of log transformation, the proposed
distribution aims to address limitations in existing models, offering improved adaptability to
various data sets and practical applications. This approach not only expands the family of
transmuted distributions but also contributes to the growing repertoire of tools for statistical
modeling and analysis.

The structure of the paper is as follows: Section 1 provides an introduction to the study.
Section 2, along with its subsections, explores the distributional properties of the proposed
model in detail. Section 3 discusses the parameter estimation using the maximum likelihood
estimation (MLE) technique. Section 4 presents simulation studies to evaluate the performance
of the estimators. In Section 5, the applicability of the proposed model is demonstrated using
three real datasets related to cancer patients. Finally, Section 6 concludes the paper with a
summary of the findings and key conclusions.

2 Distributional properties

A new probability distribution is characterized by considering its associated properties. Each
of the properties of PDF provides valuable insights and behavior of the random variable it
represents. Thus in this section, different distributional properties have been derived for the
proposed probability distribution.
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2.1 Survival characteristics
In this section, we will discuss the survival function and hazard rate of the proposed model.

o The survival function S(x) is the probability that an equipment /item survived at least time
x and it is defined as

Sx)=PX>x)= Llog {2— (1 —eilx> (1 +Oceflx>} :

log2
7] a=0.1, A=0.9
@ a=02 A=05
e — 0=10,A=06
= - —— =10 A=07
W = |
[an]
o |
e T T T T
0 2 4 6
X

Figure 2: Survival function of LTTE for varying values of & and 4.

o The hazard rate function A(x) is the instantaneous failure rate and it is defined by

Ae M (1 —o+ 2ae’“)

" (e ) (15 ae 2 log = (1=¢ ) (15 ae ]

« The reverse hazard rate h(x) is obtained as
le’l"(l—a-&-Zae’lX)
[2— (1= %) (14+ae %) [log2

h(x)= o log[2—(1—e—) (1+ae )]
log2

e The cumulative hazard function for LTTE is given by

log{2—(1—e ") (1+ae ™)}
log?2

H (x) = —logS(x) = —log

The graphical representation of the S(x) and h(x) of the proposed model for varying values of
model parameters o and A are presented in the Figures 2 and 3, respectively. We have examined
the nature of hazard for different combinations of model parameters @ and A, and from the graph,
it is evident that the model is of increasing hazard nature (except the parameters combination
where values of o and A are very high and it showing nonmonotone hazard rate).
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Figure 3: Hazard rate of LTTE for varying values of o and A.

2.2 Moments

Moments are fundamental properties of any distribution and are widely used to analyze its
features and characteristics. The rth moment about the origin for the proposed distribution is
expressed as

o0 Ae=H (1-o +2ae’“)
I E(XT :/ r
=B = Y 1= ) (1+ 0 ) log2

o l > i)yi o0 it+r (l—a—l—zae*l)‘)
R LT e (e

dx

The respective moments are obtained by putting the values of r.

2.3 Quantile function

The pth quantile function denoted by Q(p) of LTTE (x; o, A) is obtained by solving

FO(p)l=p;

and after simplification, the expression for quantile function is given by

ot =—ye |\ () = (2 b ()| 0

The respective values of quantile can be obtained by putting different values of p € (0,1) in the
above expression for known values of model parameters.
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2.4 Skewness and kurtosis

The skewness and kurtosis are commonly employed to analyze the asymmetry and sharpness of
a probability distribution. However, their computation often relies on moments, which may not
exist for certain distributions. To address these limitations, alternative measures based on the
quantile function have been proposed. Notably, Bowley (1920) and Moors (1988) introduced
coefficients of skewness and kurtosis that depend on quantile. Bowley’s coefficient of skewness,
in particular, is defined as follows:

0(3/4)+0(1/4)-20(1/2)
Q(3/4)—0(1/4) '

Similarly, the Moors’ coefficient of kurtosis is given by

y— 206/8)-0(1/8)+0(7/8) - 0(5/8)
0(6/8)—0(2/8) '

B:

Using (1), the coefficients of skewness and kurtosis can be calculated.

2.5 Order statistics

The order statistics are very crucial in statistical analysis as in this case, the analysis of data is
performed in ascending or descending order. They are very helpful specially when dealing with
extreme observations (e.g., minimum, maximum). Here we will find the expressions of PDFs for
Ist, rth, and nth order statistics when the sample follows the proposed distribution.

Suppose that X;,X>,...,X, are a random sample of size n from the proposed distribution and
their corresponding order statistics are Xi.,, X2, . .., Xn:n. The PDF of the rth order statistic X;.,,
say frq(x), for the proposed distribution is given by

n! !
Frn(x) = (r—1)!(n—r)!log2]" [Iog{ —(1 e—’lx) (1+ ote)] }}

[log{Z—(l—e_’lx)(l—i—ae_b‘)}] "(1— a+2ae M)

xAe 2= (1—¢ 2 (1 +ae 2]

For r =1 and r = n, it simplifies as, respectively,

nhe i ik n— _ e Ax
B e (e [ I e

and

e I (Haw)}}rl e (e
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2.6 Entropy

Entropy is a measure of the uncertainty or randomness associated with a random variable X
characterized by its PDF f(x). It is a significant concept with applications in various fields,
including communication, physics and reliability. Among the various measures of entropy, the
Rényi entropy, introduced by Rényi (1961), is one of the most widely used. For the proposed
distribution, the Rényi entropy is defined as

Rp=oyloe [ UPds p Al

After simplification, the expression for R, for proposed distribution is given by

1 = = (xp) AiP (1 - a+2ae) g
1—p1°g{,.§5/o i [mgz{z—(l—eh)(uaeh)} depp#EL

where p is the order of entropy.

Ry=(-1)

2.7 Bonferroni and Lorenz curve

The Lorenz curve and the Bonferroni curve are graphical tools used to analyze inequality in
the distribution of resources, such as income or wealth. The Lorenz curve plots the cumulative
share of a quantity held by the bottom x% of the population, highlighting overall inequality,
with greater deviations from the diagonal line indicating higher inequality, for more detail see
Lorenz (1905). In contrast, the Bonferroni curve focuses on the proportional share of resources
held by the lower part of the population, making it more sensitive to changes at the lower
end of the distribution; see for more detail Bonferroni (1941). Both curves complement each
other in understanding inequality, with the Lorenz curve offering a broader perspective and the
Bonferroni curve providing detailed insights into the distribution among the less advantaged.
The expression for Lorenz and Bonferroni curves for the proposed distribution are given by

1P AP (1—o+20e )
L(p):“/o xf(x)dx= /Oxe A 2=

ulog?2 1—e ) (14 ae )] da
and ( . )
1 P ), p “Ax 1-— o+ 20{6_ x
= — = d
B = /o * () dx #p10g2/0 RS (e ™) (1t ae )]
respectively.

3 Parameter estimation

Parameter estimation is the process of determining the unknown parameters of a statistical
model based on observed data, with the goal of identifying the parameters that best describe
the underlying distribution or process. Common methods include MLE, which maximizes the
likelihood function; the method of moments, which matches sample moments with theoretical
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moments; least squares estimation, which minimizes the sum of squared differences between ob-
served and predicted values. The choice of method depends on the data, model and assumptions
about the distribution. Here, the MLE method has been considered for the estimation of the
model parameters.

3.1 MLE

Let X;,X5,...,X, be a random sample of size n from LTTE (x;c,A). Then the likelihood function
is given by
n 71 i
A v i1 (1= o+ 2ae) _
(og2) LB (=) (1T ae ™)

Therefore, the log-likelihood function after ignoring the constant term is given by

n n n
logL=nlogA —2 Y x;+ Y log (1 — a+2ae*/1x,-) ~Y log [2_ <1 _e—/lx,-) (1 +aef7LXi>:| .
i=1

i=1 i=1

Lo, Alx) =

The maximum likelihood estimates (&,i) of the parameter a, and A can be obtained by differ-
entiating the above equation with respect to o and A, respectively, and equating them to zero.
The following normal equations are obtained:

n —Ax;
)3

| d l1—e
72.)(,‘ —
L0 —(x+2oze—“t) e e (rae )] Y @)

and
—Axi 1 xie”uf (1 -+ 2066’7“‘")

F L e R (e (1 e

=1

respectively. The nonlinear equations (2) and (3) are challenging to solve analytically, as they
cannot be expressed in closed form. Various methods have been proposed to address such
equations, with the Newton—Raphson method being one of the most widely used techniques
for iterative and numerical solutions. Using the Newton—Raphson method, the estimates of o
and A (denoted as & and A, respectively) can be obtained by solving these nonlinear equations
iteratively.

3.2 Asymptotic confidence interval

Since the explicit distributions of the ML estimators are not available in closed form, thus
the asymptotic confidence intervals are constructed in this subsection; see Singh et al. (2014).
To achieve this, the Fisher information matrix is derived to facilitate the computation of the
asymptotic confidence intervals for the parameters o and A. The resulting expressions for the
Fisher information matrix are provided as follows:

82LogL B 82LogL
Sa? ool

82LogL 8%LogL

T 8Ada A2

H(o,A)=E
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All the above derivatives are evaluated at (&,i). The asymptotic variance-covariance matrix of
the maximum likelihood estimators is obtained by inverting the Fisher information matrix. The
diagonal elements of I~!(c,A) provide the asymptotic variances of a and A. Using large sample
theory, a two-sided 100(1 — )% asymptotic confidence intervals for the parameters o and A are
constructed as

O F Zg o/ var(a),

A FZgjav/var(),

respectively, where Zg; is the tabulated value of standard normal distribution at /2% level
of significance. The width of a confidence interval reflects its precision, with narrower intervals
indicating more precise estimates. The average width is the mean of all interval widths computed
across simulations. Coverage probability measures how often the intervals contain the true
parameter value, indicating their reliability. Ideally, intervals should have a small width for
precision and a coverage probability close to the nominal level (1 — ) for accuracy.

and

3.3 MLE of survival function and hazard function

If & and A are the maximum likelihood estimates of the parameters a and A, respectively, then
by the invariance property of likelihood estimators, the estimates of the survival function and
the hazard function for any mission time # > 0 can also be obtained. According to this property,
the survival function S(7) and the hazard function Ah(t), which are functions of o and A, can be
estimated by substituting their maximum likelihood estimates into the respective expressions.
Thus, the estimated survival function and the estimated hazard function are given by

S(x)= 10:gzlog [2— (1 —eiix> (1 —l—de*ixﬂ ,

and

ie’ix (1 -0+ 2&6’“)

[2— (1 —efix) (1 +de*ix)] log [2— (1 —e%) (1+ae%)} ’

respectively. These estimates provide practical insights into the reliability and risk associated
with different mission times.

h(x)=

4 Simulation study

In this section, a Monte Carlo simulation is conducted to evaluate the performance of the pro-
posed point estimators and interval estimates of the parameters. The simulation examines the
behavior of the estimators under varying sample sizes and varying model parameter values.
Specifically, the sample sizes considered are n = 30,60,90,120,150, and the parameter combi-
nations include (¢ =0.1,A =0.9), (¢ =0.2,A =0.8), (¢ =0.06,A =0.7) and (&t =0.1,A = 1.0).
These parameter settings are chosen to cover a wide range of scenarios for assessing the per-
formance of the estimators. The performance of the point estimators is assessed based on their
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mean square errors (MSEs), while interval estimators are evaluated using average width (AW)
and coverage probability (CP). 95% asymptotic confidence intervals for the parameters are
constructed for the same variation, and their corresponding AWs and CPs are also reported.
All computations are carried out using the open-source statistical R Software (2024) ensuring
transparency and reproducibility of the study. Each combination of sample size and parameter
values is examined through 10,000 replications and the results-comprising average estimates
(AE), biases and MSEs which are summarized in tabular form (Table 1). The simulation results
indicate that the MSEs of the estimators decreases to zero as the sample size n increases, accom-
panied by a reduction in the widths of the confidence intervals. This behavior demonstrates that
the estimators become more precise and their estimated values converge to the true parameter
values as the sample size grows. Furthermore, the negligible bias observed across all scenarios
supports the conclusion that the proposed estimators are asymptotically unbiased.

Table 2 presents the computed estimates of the survival and hazard functions for varying
values of model parameters, demonstrating how the reliability and risk change across different
parameters and mission time scenarios.

Table 1: AE, bias, and MSEs along with AW and CPs for the parameters for varying values of o and A with
different sample sizes n.

a=0.1 A=0.9
AE Bias MSE AW CP AE Bias MSE AW CP
30 -0.0395 -0.1395 0.2692 1.9696 0.8745 0.9852 0.0852 0.0859 1.0690 0.9151
60  0.0450 -0.0550 0.1650 1.5552 0.8680 0.9324 0.0324 0.0449 0.8076 0.9021
90 0.0v8 -0.0215 0.1271 1.3574 0.8737 0.9141 0.0141 0.0337 0.6932 0.8939
120 0.0940 -0.0060 0.1077 1.2173 0.8740 0.9061 0.0061 0.0275 0.6169 0.8953
150 0.1037 0.0037 0.0951 1.1213 0.8788 0.9012 0.0012 0.0237 0.5656 0.8959
n a=02 A=0.8
30 0.0223 -0.1777 0.2758 1.9693 0.8742 0.8980 0.0980 0.0787 0.9997 0.9105
60 0.1140 -0.0860 0.1653 1.5746 0.8686 0.8449 0.0449 0.0404 0.7644 0.8993
90 0.1565 -0.0435 0.1289 1.3731 0.8681 0.8235 0.0235 0.0305 0.6562 0.8868
120 0.1745 -0.0255 0.1077 1.2537 0.8693 0.8147 0.0147 0.0246 0.5941 0.8878
150 0.1888 -0.0112 0.0960 1.1569 0.8696 0.8080 0.0080 0.0213 0.5455 0.8832
n o =0.06 A=07
30 -0.0663 -0.1263 0.2673 1.9719 0.8718 0.7597 0.0597 0.0490 0.8160 0.9177
60 0.0143 -0.0457 0.1652 1.5440 0.8680 0.7211 0.0211 0.0259 0.6121 0.9037
90 0.0464 -0.0136 0.1276 1.3383 0.8760 0.7078 0.0078 0.0195 0.5221 0.8965
120 0.0593 -0.0007 0.1070 1.2025 0.8770 0.7027 0.0027 0.0158 0.46563 0.8987
150 0.0667 0.0067 0.0933 1.1075 0.8849 0.6997 -0.0003 0.0134 0.4263 0.9020
n a=0.01 A=1.0
30 -0.0995 -0.1095 0.2661 1.9585 0.8708 1.0740 0.0740 0.0935 1.1327 0.9200
60 -0.0250 -0.0350 0.1658 1.5259 0.8687 1.0238 0.0238 0.0499 0.8453 0.9073
90 0.0030 -0.0070 0.1263 1.3209 0.8781 1.0074 0.0074 0.0373 0.7199 0.9027
120 0.0150  0.0050 0.1066 1.1766 0.8832 1.0008 0.0008 0.0305 0.6363 0.9033
150 0.0195 0.0095 0.0909 1.0781 0.8929 0.9982 -0.0018 0.0254 0.5802 0.9106
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Table 2: Estimate of the reliability and hazard functions for varying values of ¢ for different sample sizes n and
model parameters o and A.

a=01,A=09 a=02,1=08 a=006A1=07 a=0.1,A=1.0

"' TRy ko Ro ko) Ro k) RO o)
30 0.4705 0.8723 0.4925 0.8068 0.5754 0.6357 0.4280 0.9858
60 0.4708 0.8384 0.4918 0.7775 0.5734 0.6155 0.4292 0.9451
90 1.00 0.4698 0.8278 0.4904 0.7689 0.5715 0.6099 0.4286 0.9319
120 0.4690 0.8230 0.4893 0.7650 0.5703 0.6074 0.4280 0.9257
150 0.4684 0.8200 0.4884 0.7627 0.5694 0.6060 0.4276 0.9218
30 0.3796 0.9037 0.4039 0.8331 0.4913 0.6605 0.3361 1.0200
60 0.3817 0.8641 0.4051 0.7980 0.4913 0.6356 0.3390 0.9734
90 1.25 0.3816 0.8509 0.4045 0.7867 0.4901 0.6279 0.3393 0.9574
120 0.3813 0.8446 0.4038 0.7812 0.4893 0.6243 0.3392 0.9498
150 0.3810 0.8406 0.4033 0.7779 0.4887 0.6221 0.3391 0.9448
30 0.3047 09280 0.3298 0.8537 0.4175 0.6812 0.2628 1.0455
60 0.3080 0.8845 0.3323 0.8142 0.4191 0.6527 0.2664 0.9950
90 1.50 0.3086 0.8693 0.3324 0.8008 0.4187 0.6433 0.2673 0.9771
120 0.3086 0.8621 0.3322 0.7941 0.4183 0.6389 0.2675 0.9685
150 0.3086 0.8574 0.3320 0.7899 0.4180 0.6361 0.2676 0.9629
30 0.2439 0.9465 0.2686 0.8695 0.3536 0.6983 0.2049 1.0640
60 0.2476 0.9004 0.2718 0.8269 0.3563 0.6672 0.2086 1.0112
90 1.75 0.2486 0.8838 0.2725 0.8119 0.3565 0.6565 0.2098 0.9920
120 0.2489 0.8759 0.2726 0.8042 0.3564 0.6514 0.2102 0.9828
150 0.2491 0.8707 0.2726 0.7994 0.3563 0.6482 0.2105 0.9766

5 Real data applications

In this section, three real datasets related to different types of cancer patients have been utilized
to illustrate the practical applicability of the proposed log transformed transmuted exponential
distribution (LTTED). The first step involved evaluating whether the selected cancer datasets
were appropriate for modeling with the proposed distribution. This suitability assessment was
carried out by comparing the performance of the LTTE model with some other widely used life-
time distributions. The comparisons were made using well-established model selection criteria,
including the Akaike information criterion (AIC), the Bayesian information icriterion (BIC),
the KS statistic and the corresponding p-value obtained from the KS test. The performance
of the proposed LTTE model was compared against four competing lifetime distributions: the
transmuted exponential distribution (TED), the exponentiated exponential distribution (EED),
the Weibull distribution (WD), and the log-exponential distribution (LED). These distributions
were chosen due to their popularity and applicability in modeling lifetime data. The model
comparison was based on specific criteria: lower values of AIC, BIC, and KS statistic indicated
a better fit to the data, while higher p-values from the KS test suggested greater conformity of
the data sets to the theoretical distribution. In general, a model demonstrating smaller AIC,
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BIC, and KS values alongside a larger p-value was considered the most suitable. To provide a
clear understanding, the PDFs of the competing models are detailed below:

o Exponential distribution (see Owoloko et al. (2015)) with PDF
FA, ) = he ™ (1 —a+2ae‘“) . x>0,0,4>0.
o Exponentiated exponential distribution with PDF
. ) o]
FxA,a) = ale x(l e ) . x>0,0,1 >0,

e Weibull distribution with PDF
FlroA)=ar(Ax)* e ®" x> 0,a,1 >0.

o Log exponential distribution (Maurya et al. (2016)) with PDF

ef/'Lx
f(x72‘) = ( A

—, x>0,A>0.
l—i—e—l") log2

5.1 Data set-1I: Breast cancer data

The first dataset represents the survival times of 121 patients diagnosed with breast cancer,
collected from a large hospital over the period 1929 to 1938 and is mentioned in Lee (1992).
This dataset has been previously analyzed and discussed in studies by Al-Kadim and Mahdi
(2018). The dataset is as follows:

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4,
14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0,
21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0,
37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0,
45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,
60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0,
96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0

The total time on test (TTT) plot for the considered real dataset is presented in Figure 4.
The plot indicates that the data exhibits an increasing hazard rate, which aligns with the hazard
rate of the proposed model, making it potentially suitable for modeling such data. Al-Kadim
and Mahdi (2018) introduced the exponentiated transmuted exponential (ETE) distribution
to analyze this dataset and demonstrated that ETE outperformed three other lifetime models
namely lognormal (LN), log-logistic (LL) and exponential distribution (ED) based on its lower
AIC (1169.63) and BIC (1178.02). In this study, we further compare the proposed LTTE model
with above mentioned four other competing models and observed that the proposed LTTE model
exhibits the lowest AIC, BIC, and KS statistic values among the fitted models, including the
ETE model, see Table 3. This strongly suggests that the LT'TE model provides the best fit for
this dataset and can be considered the most appropriate model for analyzing the survival times
of breast cancer patients in this context.
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Figure 4: TTT plot of breast cancer dataset.

5.2 Data set-II: Bladder cancer data

The second dataset represents the remission times of 128 bladder cancer patients, extracted from
Lee and Wang (2003) and is given by

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26,
3.57,5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.8,2 0.51, 2.54, 3.70,
5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,
7.39, 10.34,,14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41,
7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69

The TTT plot of the considered dataset (Figure 5) shows that the data is of nonmonotone
hazard nature even though from Table 3, it can be seen that our proposed model fits the data
very well. Khan et al. (2013) analyzed this dataset using the transmuted inverse Weibull (TIW)
distribution, comparing it with the transmuted inverse Rayleigh (TIR), transmuted inverted
exponential (TIE), and inverse Weibull (IW) distributions. Based on AIC, BIC, and KS values,
they concluded that the TIW distribution provided the best fit. Kumar et al. (2015) proposed the
DUS exponential distribution and demonstrated that it outperformed the TIW model, achieving
lower AIC (834.044) and BIC (836.896) values. In this study, we extend the comparison to
include the proposed LTTE distribution. Table 3 shows that the LTTE model achieves the
lowest AIC and BIC values among all the models considered by Khan et al. (2013) and Kumar
et al. (2015), establishing it as the best fit for this dataset.
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Table 3: The values of the negative of log-likelihood —logL, AIC, BIC, and KS value along with p-values for
all the considered data sets.

Data set-I: Breast Cancer Data
Models  —logL AlIC BIC KS  p-value
LTTED 578.943 1161.885 1167.477 0.054 0.866
TED 578.978 1161.955 1167.547 0.068  0.638
EED 580.094 1164.187 1169.779 0.080 0.414
WD 579.024 1162.047 1167.639 0.060 0.779
LED 582.319 1166.639 1169.435 0.103  0.153

Data set-II: Bladder Cancer Data

LTTED 310.064 624.128 627.506 0.080 0.382
TED 311.441 626.882 630.260 0.095 0.195
EED 310.156  624.311 627.689 0.073 0.511
WD 322.056  648.111 651.489 0.070  0.557
LED 318.921 639.843 641.532 0.078 0.411

Data set-III: Leukemia Dataset
LTTED 412.784 829.568 835.272 0.185 0.113
TED 413.497  830.995 836.699 0.188  0.105
EED 413.078  830.155 835.859 0.165  0.201
WD 414.087  832.174 837.878 0.307  0.001
LED 414.962  831.923 834.775 0.293  0.002

5.3 Data set-III: Leukemia dataset

The dataset-11I is taken from Abouammoh et al. (1994), which represents the ordered lifetimes
of 40 patients suffering from leukemia, collected from one of the Ministry of Health hospitals in
Saudi Arabia. The data set is

115 181 255 418 441 461 516 739 743 789 807 865 924 983 1024 1062 1063 1165 1191 1222 1222
1251 1277 1290 1357 1369 1408 1455 1478 1549 1578 1578 1599 1603 1605 1696 1735 1799 1815
1852

The TTT plot for this dataset is presented in Figure 6. The plot indicates that the data
exhibits an increasing hazard rate, which suggests that models with an increasing hazard rate,
such as the proposed LTTE model, may be particularly suitable for accurately representing the
underlying data behavior. The results of this comparison, as summarized in the third part of
Table 3, reveal that the LTTE model achieves the lowest AIC and BIC values among all the
competing models. These lower values indicate that the LT'TE model provides the best balance
between model complexity and goodness-of-fit for the leukemia data set. Consequently, the
LTTE model is determined to be the most appropriate and effective distribution for analyz-
ing this dataset, reinforcing its potential as a robust tool for modeling lifetime data with an
increasing hazard rate.
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Figure 5: TTT plot of bladder cancer dataset.

6 Summary and conclusions

This research paper formulates a new lifetime probability model, named log transformed trans-
muted exponential by the extension of transmuted exponential via log transformation. The
proposed distribution has an increasing hazard rate. Numerous significant properties of the new
distribution are discussed including moments, skewness, kurtosis, order statistics, entropy, quan-
tile function, reliability function and hazard rate. The maximum likelihood estimation procedure
is employed to estimate the model parameters. Lastly, we considered three real-life datasets of
cancer patients and four other distributions namely transmuted exponential, exponentiated ex-
ponential, log exponential and Weibull distributions. It is observed that the proposed LTTE
distribution fits the considered datasets very well. The AIC, BIC, and KS-test values illustrate
that proposed distribution is better than the above mentioned existing distributions and can be
used as an alternate model for the cancer patients datasets.
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Abstract. The present study aims to estimate multiple change points in the time series data of
confirmed COVID-19 cases and deaths, as well as to assess trends within the identified multiple
change points in various countries. The data were analyzed using Poisson time series models that
incorporate exogenous variables and autoregressive components, and the estimation of change
points was conducted using the reversible jump Markov chain Monte Carlo method. Using
the proposed method, we analyze the trajectory of cumulative COVID-19 cases and deaths
in these countries, uncovering significant patterns that may have important implications for
the effectiveness of pandemic responses across different nations. Furthermore, utilizing a change
point detection algorithm in conjunction with a flexible time series model, we apply a forecasting
method for COVID-19 and demonstrate its effectiveness in predicting the number of deaths in
Japan.
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chain Monte Carlo.

1 Introduction

In this paper, we propose a modeling approach for the time series of confirmed COVID-19
cases and deaths in some countries using a Poisson autoregressive regression model (the formal
definition is provided later). Specifically, we aim to model the mean of the infections and deaths
as a log-linear model that accommodates an unknown number of potential changes in both the
intercept and the slope. This approach is warranted, as it is reasonable to anticipate that the
spread of COVID-19 may progress through several distinct phases. Initially, the growth rate is
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typically rapid due to the absence of immunity and insufficient preparedness. Subsequently, the
dynamics may transition into phases characterized by slower growth, influenced by government
interventions and public health responses aimed at flattening the curve. The estimation of this
model can be framed as a change point detection problem.

In recent years, change point analysis has emerged as a vibrant area of research within statis-
tics and econometrics, owing to its diverse applications across various fields. Notable examples
include bioinformatics (Fan and Mackey, 2017), climate science (Gromenko et al., 2017), eco-
nomics (Bai, 1994, 1997; Cho and Fryzlewicz, 2015), finance (Fryzlewicz, 2014), medical science
(Chen and Gupta, 2011), and signal processing (Chen and Gu, 2018). Recent reviews on this
topic can be found in the works of Perron (2006), Aue and Horvath (2013), and Truong et
al. (2020). However, much of the existing literature on change point analysis operates under
the assumption of piecewise stationarity. This assumption posits that while the time series in
question may be (potentially) nonstationary, it can be segmented into distinct intervals where
each segment is stationary and characterized by a common parameter of interest, such as the
mean or variance. Although the piecewise stationarity assumption has proven to be effective for
many applications, methods developed within this framework are often inadequate for address-
ing time series with inherent nonstationarity, such as the cumulative infection or death curves
of COVID-19.

Following the emergence of the COVID-19 epidemic, several authors have employed change
point methods to analyze related data; see, for example, Jiang et al. (2022), ST et al. (2022),
Jiang et al. (2023), Dehning et al. (2020), Majidizadeh and Taheriyoun (2024) and Majidizadeh
(2024). These methods provide valuable insights into the dynamics of the epidemic, allowing
for the identification of significant shifts in trends and patterns over time. By detecting change
points, researchers can better understand the impact of various factors, such as government
interventions and public health measures, on the progression of the virus.

1.1 The Data

The scope of our analysis encompasses four countries: Iran, Spain, the United States, and
Japan. The temporal domains for data segmentation are as follows: first, from April 10, 2020,
to October 30, 2021, for the analysis of data in Iran and Spain; second, from April 1, 2021,
to November 30, 2021, to examine the effects of vaccination and nonvaccination public health
measures in the United States; and third, for short-term forecasting in Japan, the period is May
2020.

During the period from April 10, 2020, to October 30, 2021, both Iran and Spain experienced
significant challenges due to the COVID-19 pandemic. This timeframe saw multiple waves of
infections, the introduction of various public health measures, and the rollout of vaccination
campaigns.

Iran experienced several waves of COVID-19 infections during this period. The first wave
began in February 2020, with a significant increase in cases noted in March and April 2020.
The second wave peaked in late June and early July 2020, followed by a third wave starting in
November 2020, which continued into early 2021. The fourth wave began in April 2021, largely
driven by the Delta variant, which became prevalent in mid-2021 (World Health Organization,
2021). The Iranian government implemented various restrictions throughout these waves, in-
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cluding lockdowns, travel bans, and the closure of schools and nonessential businesses. For
instance, in response to the surge in cases during the third wave, authorities imposed stricter
measures in November 2020 and continued to adapt these measures based on the epidemiologi-
cal situation (Iran Ministry of Health, 2021). Iran began its vaccination campaign in February
2021, initially using the Russian Sputnik V vaccine and later incorporating other vaccines such
as Sinopharm and AstraZeneca. By October 2021, the vaccination rate was gradually increasing,
but challenges related to vaccine supply and public hesitancy remained (Iranian Red Crescent
Society, 2021).

Spain faced several waves of COVID-19 infections, with the first wave peaking in April
2020. The second wave began in late summer 2020, peaking in January 2021. A third wave
occurred in March 2021, driven by the emergence of new variants, including the Alpha variant.
The Delta variant began to spread in mid-2021, contributing to a fourth wave that peaked in
July 2021 (Spanish Ministry of Health, 2021). The Spanish government implemented strict
lockdown measures during the initial wave in March 2020, which were gradually eased in the
summer. However, restrictions were reintroduced in response to subsequent waves, including
curfews, limits on gatherings, and the closure of nightlife venues. In late 2020 and early 2021,
measures were adapted based on regional epidemiological data (Government of Spain, 2021).
Spain’s vaccination campaign began in December 2020, with a rapid rollout of vaccines, primarily
the Pfizer-BioNTech and Moderna vaccines. By October 2021, Spain had one of the highest
vaccination rates in Europe, with over 80% of the adult population fully vaccinated (European
Centre for Disease Prevention and Control, 2021). Figure 1 presents the graphs depicting the
total confirmed COVID-19 cases and total deaths in Iran and Spain from April 10, 2020, to
October 30, 2021.

From April 1, 2021, to November 30, 2021, the United States faced significant challenges due
to the COVID-19 pandemic, marked by multiple waves of infections, the emergence of variants,
the implementation of government restrictions, and a nationwide vaccination campaign. The
United States experienced several distinct waves of COVID-19 infections during this period. The
initial wave peaked in April 2020, with a rapid increase in cases and deaths, particularly in New
York and other urban areas. A resurgence of cases occurred in the late summer and fall of 2020,
peaking in January 2021. This wave was characterized by increased hospitalizations and deaths,
driven by social gatherings and holiday travel (Centers for Disease Control and Prevention,
2021). Following a decline in early 2021, a third wave began in March 2021, driven by the
emergence of new variants, particularly the Alpha variant. This wave peaked in late April
and early May 2021 (Centers for Disease Control and Prevention, 2021). The Delta variant
became the dominant strain in mid-2021, leading to a significant increase in cases during the
summer months, particularly among unvaccinated populations. This surge peaked in late July
and early August 2021 (World Health Organization, 2021). The vaccination campaign in the
United States began in December 2020, with the rollout of the Pfizer-BioNTech and Moderna
vaccines. By April 2021, vaccination efforts were expanded to include all adults, and by mid-
2021, the vaccination rate significantly increased. By October 2021, approximately 70% of adults
had received at least one dose of a COVID-19 vaccine, with over 60% fully vaccinated (Centers
for Disease Control and Prevention, 2021). Throughout the pandemic, various government
restrictions were implemented to curb the spread of the virus: In March 2020, many states
implemented stay-at-home orders and closed nonessential businesses. As cases declined in mid-
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2020, many states began to ease restrictions, allowing businesses to reopen with capacity limits
and social distancing measures. In response to surges in cases during the fall and winter of
2020, many states reinstated restrictions, including mask mandates and limits on gatherings
(National Conference of State Legislatures, 2021). By late 2021, several states and employers
began implementing vaccine mandates to encourage vaccination among employees and the public
(The White House, 2021).

2 Count time series model

Suppose that {¥;} is a time series of counts and that %y, represents the o-field generated by
{Yo,...,Y:,0}. Specifically, we define the o-field as follows: Fy, = o(¥;,s <t,4), where o
denotes the smallest c-algebra generated by the random variables Y for s <t and the constant
Ao. This o-field captures all the information available up to time .

Furthermore, we note that the collection of o-fields {.%y j, };>0 forms a filtration. A filtration
is an increasing family of o-fields, which represents the accumulation of information over time.
In this context, it reflects how the information about the counts Y; and the intensity process A,
evolves as t increases, thus allowing for the modeling of dependencies over time. In the follow-
ing, we develop a regression model that incorporates exogenous variables and past experiences,
expressed by a nonlinear model. Consider the model given by

Y| #yy ., ~ Poisson(),

log(A) = t(ajlog(A—1)+bilog(Y,—1+1))+(1—1) (1)
x <d+ Zplail(’g(%—i) +Zq:bi10g(Yt—i+ +ec' xt> ,
i=2 i=2

for t > 1, where the parameters d,a;, and b; € R, x; is the vector of time-varying covariates and
c € R" is the regression coefficient parameters, and let a = (aj,...,a,)" and b= (by,...,b,) .
Also, T is a smoothing parameter (0 < T < 1) that limits the changes in A, from one time step
to the next. In addition, we assume that Ay and Yy are fixed. We consider a pre-identified
smoothing parameter in our study, which ensures that we highly account for the effect of the
rate of the parameter in our model. This is particularly important in epidemiological contexts,
where rates can have a significant impact on the dynamics of the epidemic.

For the Poisson distribution, the conditional mean is equal to the conditional variance, that
is,

ElY, | Fy), ] = Varlti | Frs, ) = .

Thus, the proposed modeling is based on the evolution of the mean of the Poisson distribution,

rather than its variance. For a comprehensive review of count time series models, we refer
readers to Weil (2018) and Fokianos (2012).

Remark 1. It would be advantageous to treat T, p, and q as parameters, allowing the observations
and methods to estimate them. In this scenario, estimating p and g would require a separate
the reversible jump Markov chain Monte Carlo (RIMCMC) method sampling algorithm and
incorporate additional complexity into the model. However, for the purpose of our study and to
manage computational costs, we assume that these parameters have been identified.
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2.1 A priori assumptions for the model without change point

We assume that p(a',b",e",d) = p(a’) x p(b") x p(e") x p(d). This independence plays an
important role in the computational cost of posterior computation. Let us define 5(1’*‘1)
(a",b",¢",d)". We propose N(0,0l;) prior for €749 where I is a k x k identity matrix and o
is variance parameter (hyper-parameter). We consider a uniform prior % (0,cq) for a?, where
cq is a known large value.

(3]

Our Bayesian computation is a fusion of Gibbs sampler and RJMCMC, which requires the
full conditional distributions. The conditional distribution of &9 is

1 T
PP, | o2 ) < F(VIEPD) exp <— i 5”’"”) ’ @)
where f(Y|€(P9) is the likelihood function in (1) and note that
_ 1 T
p(o? | €09) o (@) exp (= 25679 £09),  a?e (0., (3)

which is the truncated inverse gamma distribution, IG(k/2 — 1,—%5(1’7‘1)T£’(1”‘1) ) (Majidizadeh,
2024), Majidizadeh and Taheriyoun (2024).

3 Segmentation of count responses

3.1 Model and notations

Consider a Markov chain whose finite-dimensional distributions change at K —1 unknown time
points, where K is also unknown. Given a partition into K segments, denote the unknown change
points by € = (£9,&1,...,€k) ", with & =0 and & = n. Here, K = 1 indicates that there are no
change points. Let % = {y;;&_1+1 <t < &} represent the set of all observed values of the
response variable in the sth segment for s =1,...,K. Our main goal is to estimate the unknown
number of change points K, the change points €, and the corresponding parameters within each
segment.

Let ng=#{t:&-1+1<t<g} for s=1,...,K denote the number of observations in the sth
segment. In this model, the observed count responses are partitioned into K segments, where the
parameters may differ from those in neighboring segments. The parameters for the sth segment
are denoted by the subscript s:

log(A4) = tx(aislog(A—1s)+bislog(Yi—1s+1))+(1—1) (4)
p q
X <d3 + Zai,s log(a't—i,s) + Z bi,s log(Yt—i,s + l) + C;r XI) )
i=2 i=2
and £P9) = (a],b] ¢/ ,d,)7, where s=1,... K.



80 Masoud Majidizadeh

3.2 Model priors

We can also assume that the number of segments K is a priori distributed as a truncated negative
binomial distribution given by

Pr(K =k) =

1 k+r—1
k

>pk(l_p)r7 k:17---7kmaX7

Cr>p7k1nax

for appropriate choices of parameters r (the number of successes until the experiment is stopped)
and p (the success probability), where ¢, p ... is a normalizing constant. This distribution allows
for overdispersion relative to the Poisson distribution and can be useful in modeling scenarios
where the variance exceeds the mean. A conservative guideline for kp,x is “large enough” but
a large value of kyax obviously causes a high computational cost. Employing an expert’s idea
or preprocessing with other frequentist methods is useful in determining the value of kpax. We
suggest the following values for the parameters of the truncated negative binomial distribution:

1. r=25, this value provides moderate overdispersion, allowing for variability in the counts.

2. p=0.3, a 30% chance of success in each trial allows for a wider spread in the distribution,
appropriate for count data with larger counts being less frequent.

3. Crpkma> the normalizing constant ensures that the probabilities sum to 1 over the truncated

range of K.
K
mx Se4r—1 P
Crpkmax — Z ( k >pk(1 *P) .
k=1

This value is computed based on the chosen r, p, and kpn.x. For example, if kpa.x = 10, we
would compute cs 3,10 using the formula above.

Concerning the prior on the locations of change points, we assume that ny > ny;, for s =
1,...,K, where npyi, is the minimum segment length taken to be large enough to avoid sparsity.
We further assume that the location of the first change point, €, is a priori distributed according
to a uniform distribution over {nmin,...,n— (K — 1)imin}. This distribution is characterized by
a constant probability density function, indicating that all locations within the specified range
are equally likely. The prior on the jth change point, €;, given €;_1, is also modeled using a
uniform distribution on {&;_1 +nmin,...,n—&j—1 — (K — j)imin} for j=2,...,K—1.

3.3 Sampling scheme

-
Define E = (ET,azT,E(”ﬂ) ) as the collection of all parameters, where a? = (o?1,...,0%g) " and

e = (¢ (P7‘1)1T, Y 4 (p’q);)—r. Thus, E has a varying dimension during the algorithm’s runs. Each
MCMC iteration alternates between two updating steps: the within-model (WM) movements
and the switching-model (SM) movements, which are outlined below. The complete algorithm
for the comprehensive RIMCMC scheme, which facilitates the detection of change points and
the estimation of model parameters, is presented in Algorithm 1. For simplicity, we consider A,
as the first element of £P49)_for s=1,... K.
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In this algorithm and overall, the prime symbol is used for the proposed values and 7 is
the number of iterations. In what follows and particularly in calculation of the acceptance
probabilities, we use functions p(-) for priors and marginal distributions. The arguments of
this function discriminate that the density function is calculated for which random variable or
vector. Similarly, p(- | -) is employed to represent the conditionals and likelihoods and ¢(- | -) for
proposal density functions.

3.3.1 Switching-model (SM) movement

We aim to propose new values for the parameters, (E, k), using the proposal density ¢(E’, k" | E, k)
based on the current parameters (E,k). This update involves proposing transitions between
competing models. The proposed number of segments may either increase by one (birth) or
decrease by one (death). We denote k" as the proposed number of segments, which is randomly
chosen from K =k+1 or K = k— 1 with the following proposal density:

1/2 if s =k+1, and k # kmax, 1j > 2npmin for at least one j,
) ) 1)2 ifs=k—1,andk#1,
gk =slk) =4 ifs =k—1and k = kna,
1 ifs=k+1landk=1.

Birth (K =k+1):

This step involves creating a new segment by adding an additional change point to the existing
set of change points. To this end, a segment, denoted as s*, is randomly selected from all
segments that can be partitioned into two. The new change point in this segment is determined
by generating a random number from a uniform distribution over the set {&x_1 4 nmin,...,n—
&-—1— (K—j)nmin}. Let €. be the generated change point, which must be included in the
proposed vector g’

The point &' is chosen to satisfy the conditions &' — &+_1 > nmin and &« — €. > npin. Given
&', we need two new hyper-parameters for the variance of the conditional distribution of the
coefficients E(‘W)IS* and f(”"q);* 41 for each new segment. To ensure positivity and simplify ac-
ceptance probability calculations, we propose new hyper-parameters Ocsz*, and Ocsz* +1/’ generated
using an auxiliary variable u ~ % (0,1) and deterministic functions of u and a2 as follows:

SA_*+| 785* 1 Ss* 78_;*71

2/ 2 u £k | —EcF_| 2/ 2 —UN e
O‘s*:(Jﬂhv*(m)s+ T e =0 » T (5)

Two new coefficients are proposed based on these new hyper-parameters. The acceptance prob-
ability of the algorithm for this step is Green (1995)

min{ 1, ( likelihood ratio) x (prior ratio) x (proposal ratio) x (Jacobian)}.

Thus, the birth movement is accepted with probability min{1,A;}, where

JE|ZK) p(E [K)p(K) q(k|K)g(e]|K k)
fE[Z"k) pE|k)pk) q(k [k)g(e' |k k)p(u)

A /|,
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where p(u) =1, u € [0,1], and it is straightforward to show that
pk) _ p(k+5)

plk) — k+17
p(e'| k)
p(e | k)
aelkk)
qle’ | k&) — 7
where K = k+1. Note that, although we are calculating the current or proposed values in the
prior ratio in (6), we have

p(k,E) = p(k,e,0?,PD) = p(k)p(e | k)p(a® | e,k)p(£79) | &2 &, k).

The denominator in the proposal ratio refers to the conditional density of the proposed number
of segments and parameters given the current state, as follows:

gK,E'|E) = q(K|k)q(E |kK,E)
= gk |k)q(e',a® P9 |k K E)
— (K | K)g(e' | kK E)g(a® P9 | & kK E)q&P? | a? e kK E).

1,

After acceptance of this move we update s(p,q); and £(l’=q)_2* 41 using the Adaptive Rejection
Sampling (ARS) (see Gilks and Wild, 1992).
The determinant of the Jacobian of the transformation between the parameters of the two

models, |J|, is

2
d(q;*vas/*-s-l) ‘ _ (ag* + a;*-s-l)

J:
d ’ d(o,u) Ol

Death (K =k—1):
One of the change points, &, is randomly chosen from the set {&j,€&,...,&_1} to be removed.
After selecting the hyper-parameters oy and %1, and using the reversing labeling described
in (5), the proposed hyper-parameter, denoted as azls*, is constructed. This is achieved by re-
versing the process explained in the Birth step. Once again, due to the lack of a computationally
suitable form for the conditional posterior, we update the coefficient vector & (1’7‘1)2* using the ran-
dom walk Metropolis algorithm. Note that the acceptance probability, min{1,A,}, for the death

movement is simply obtained using the inverse of that for the birth and is summarized as

fE |2 K) p(E"|K)p(K') q(k|K)q(e | K k)
FE[Z k) p(E k) p(k) q(K|k)g(e" | kK)p(u)
where p(u) =1, u € [0,1], |J] = (ot + Q4 1) >l and

A; 7],

pk)y k41
pk) — pk+5)’
PR
p(e | k) ’
delkl) _

q(e" [ k,k)
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where K =k—1 and

Egx —Egx | S

a; _ (as*) Ep 1851 X (as*+1) oy~ Ex | (6)

/
s§*

After accepting the move we update €74 . using ARS.

3.3.2 Within-model (WM) movement

This moving scheme involves sampling the parameters of the current model using Metropolis-
Hastings updates. In this step, the number of segments remains unchanged, so k' = k. A change
point is randomly selected for relocation. Specifically, we first select a change point, &+, and then
propose a new location from the interval [g¢_1,&¢+1]. The corresponding acceptance probability
for this move is given by min{1,A3}, where

FEPDEPVe | LB, K)  pePD
f(E(P,CI)S*7€(P,q)x*+1 ’ @S*?@S*-‘rl 7k7 azs*a a2S+1*) P(E(p’q)s*

K)p(€PD, | K)
K)p(€Pad .\ | k)

A3

Note also that the hyper-parameters 062;* and azg* 41 are updated via Gibbs sampler, and also
5(”7‘1);* and 5(1’”);* are updated via ARS.

In our RIMCMC algorithm, we define the stopping time based on the generation of a total
of 50,000 pseudo-random samples. The procedure involves the following steps:

e Total samples: The algorithm is designed to generate a total of Nigta1 = 50,000 samples.

e Burn-in period: The first Ny, = 10,000 samples are excluded from analysis to allow
the Markov chain to reach convergence. These samples are considered the burn-in period
and will not be used for parameter estimates.

The algorithm will stop once the total number of generated samples reaches Niota. The
valid samples used for inference will thus be the last Niotal — Npurn = 40,000 samples.

Example 1. To demonstrate the functionality of the presented method in both scenarios—
with and without a change point—we generate one realization from the model. In the following
simulation studies, we consider p = ¢ =r =1, and also we set T =0.6. We construct x, =
1-0.5-.47(0,1) as the covariate and generate two datasets, each consisting of 300 observations
with & = 150. For these datasets, we set

P9 = (9 (-0.9,0.2),%(—0.5,0.5),% (0,1),% (—0.7,0.7)) "+,

where ¢ = 0 for dataset 1 and ¢ = 0.9 for dataset 2. Therefore, dataset 1 can be effectively
considered to have no change point, while dataset 2 exhibits a pronounced change point in the
parameters. Figure 2 presents a realization for dataset 2. Figures 3a and 3b display the posterior
distributions of the number of change points for the models without and with the change point,
respectively. According to Figure 3a, the method demonstrates no false positive performance
in models without a change point. Figure 3c shows the estimated posterior distribution of the
change point. This represents a single application of the Bayesian method; the average behavior
across multiple replications will be explored in the following section.
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4 Simulation studies

To assess the performance of our methodology, we apply it to two different simulated data
settings.

In the first simulation setting, we examine the estimator for the single change point problem.

Accordingly, we consider the following parameters setting for the model defined in Section 3.1:

P9, = (U (—1,1),%(-0.5,0.5),%(0,0.8),%(-2,2))", for 1<x<150, -

P, = (% (1.2,1.5), % (—1,0),% (1.2,1.4),% (=3,-2)) ", for 150 < x < 300. (7)

Using 300 observaosterior samples. The algorithm generates 50,000 pseudo-random numbers,
excluding the first 10,000 values as a burn-in period for all parameter estimates. According to
Figure 4a, the maximum a posteriori (MAP) estimator of the number of change points is 2 across
all replications. Figure 4c illustrates the empirical posterior density of the single change point
location, confirming that the method provides an accurate estimate of the change point location
at 150. This simulation study focuses on estimation loss, so we do not fix the parameter values.
The mean of the empirical squared errors (MESE) of the parameters is presented in Table 1.

We use the Bayesian information criteria (BIC) for model comparison. The resulting average
BIC based on the obtained estimates is 1040.175. By eliminating the possibility of a change
point in this study, the average BIC increases to 1173.404, confirming the accuracy of the model
with change point even though its number of parameters is more than twice that of the model
without change point.

A further simulation study is conducted with three change points, using the following pa-
rameter settings:

£Pa), = (% (~1,0.5),%(—0.5,0.8),%(0.2,0.8),%(—0.5,0.5)) ", for 1<x<a,

gra), = (@/(07 1.3),%(0.8,0.9), % (—0.9,0), % (—1.3,-0.7)) ", for a; <x<an, ®
£y = (% (—1,0),%(0.2,0.6), % (—1.5,—0.5),%(0,0.7)) ", for ay <x<as,
5(%‘1)4:(%(0206) U (—1,0),%(0.1,0.8),%(1,1.5))" for as < x < 1000.

The a; values are randomly chosen from the intervals [225,275], [475,525], and [725,775] for
i=1,2,3, thereby randomizing the change point locations. The simulation setting is replicated
200 times, each with 1,000 observations, and we set kyax = 10 and 1y, = 50. A posteriori bar plot
of the number of change points is illustrated in Figure 4b, suggesting that the MAP estimate is
three in all replicates. The empirical posterior densities are shown in Figure 4d. The estimates
of change point locations are generally reliable; in 97.30%, 97.40%, and 98.30% of simulations,
the estimated values of €], &, and & fall within the original intervals, respectively. The mean
of the evaluated empirical loss for this setting is provided in Table 2. An independent numeric
study is conducted with the same settings but with fixed change points at 250, 500, and 750,
with a single replication. The MAP estimates of the change points vector € are (238,529,774),
while the posterior sample mean is (246,508,764) in this recent simulation study. The bar
plot of the number of change point and the empirical density values of the generated change
points are shown in Figures 4e and 4f. Based on the BIC, our analysis confirms that the three
change point model demonstrates a superior fit compared to both the two change point and
four change point models. This finding suggests that the three change point model effectively
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balances model complexity and goodness of fit, providing a more parsimonious representation
of the underlying data structure. Furthermore, the BIC serves as a robust criterion for model
selection, penalizing excessive complexity while rewarding models that adequately capture the
data’s essential features. The preference for the three change point model indicates that it
captures the significant shifts in the data while avoiding overfitting, which can occur in more
complex models.

Remark 2. We also employed the methodologies presented by Ko et al. (2015) and Fearnhead
(2006), both of which demonstrated a high level of accuracy in detecting change points and
estimating model parameters. However, our findings indicate that our proposed method exhibits
slightly superior accuracy in the estimation of these parameters.

5 COVID-19 data analysis using the proposed method

In this section, we analyze the COVID-19 pandemic using the proposed RJIMCMC method and
the Poisson time series model. Section 5.1 presents a segmentation of the coronavirus infection
and mortality curves across four countries. Building on the proposed algorithm, Section 5.2
evaluates the impact of COVID-19 vaccination and public health measures on the number of
confirmed cases and deaths in the USA. Finally, Section 5.3 provides forecasts for deaths in
Japan based on the proposed Poisson time series model.

5.1 Segmentation of COVID-19 confirmed cases and deaths

The primary objective of this study is to develop a robust technique for accurately identify-
ing change points in the dynamics of COVID-19 outbreaks. To achieve this, we employed an
RIJMCMC-based method applied to Model (1) for a comprehensive analysis of data from Iran,
and Spain, covering the period from April 10, 2020, to October 30, 2021. This analysis focuses
on segmenting daily confirmed cases and COVID-19-related deaths, thereby enhancing our un-
derstanding of the evolving patterns of the pandemic across different regions. In this section,
we analyze the relationship between the total number of deaths attributed to COVID-19 and
various covariates. Specifically, we consider the logarithm of total tests administered (x;) and
the logarithm of total confirmed cases (or alternatively, the total deaths, (x;) as covariates in
our model.

Figure 5 presents the timing of the change points identified by the proposed model in the case
and death curves for both Iran and Spain. The following paragraph offers a series of detailed
explanations regarding the detected change points and their relationship to various factors,
including government restrictions, initiatives by the Ministry of Health, vaccination efforts, and
the emergence of different strains of the coronavirus.

The detected change points in COVID-19 deaths in Iran from April 10, 2020, to October 30,
2021, reflect significant shifts in the pandemic’s trajectory influenced by public health measures
and vaccination efforts. Key dates include May 2, 2020, marking the decline after the initial peak
due to lockdowns (World Health Organization, 2020); June 3, 2020, and July 5, 2020, indicating
resurgence as restrictions were relaxed (Ministry of Health and Medical Education, Iran, 2020);
and October 4, 2020, signaling the onset of a second wave (WHO Iran, 2020). The introduction
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of vaccines in December 2020 and the subsequent vaccination campaign beginning January 2021
contributed to a notable decrease in deaths (CNN, 2020); (Al Jazeera, 2021). However, new
variants and public fatigue with health measures led to further spikes, particularly in August
and September 2021 (The Guardian, 2021). These change points underscore the dynamic nature
of the pandemic in Iran, necessitating ongoing public health interventions (Health Ministry of
Iran, 2021).

The identified change points in COVID-19 deaths in Spain from April 1, 2021, to November
30, 2021, reflect critical shifts in the pandemic’s dynamics influenced by various public health
measures and vaccination efforts. The change point on April 24, 2020, marks the beginning of
a decline in deaths following strict lockdown measures implemented in March (World Health
Organization, 2020). On May 17, 2020, a gradual easing of restrictions led to a resurgence in
cases and subsequent deaths, indicating the challenges of reopening (Ministry of Health, Spain,
2020). The change point on August 1, 2020, corresponds to a notable increase in deaths as the
summer wave emerged (El Pais, 2020). Subsequent change points in September and November
2020 reflect the impact of the second wave, exacerbated by increased social interactions and the
onset of colder weather (The Lancet, 2020). The December 3, 2020, change point coincides with
the approval of vaccines, shifting the focus towards vaccination campaigns (CNN, 2020). The
early 2021 change points, particularly January 8 and February 3, highlight the peak of the third
wave, leading to significant mortality (The Guardian, 2021). As vaccination efforts ramped up in
March and April 2021, deaths began to decline, with further stabilization observed by June (Al
Jazeera, 2021). However, new variants and public compliance issues led to fluctuations in deaths
through late summer and fall, as indicated by the change points in August and October 2021
(Reuters, 2021). These change points illustrate the complex interplay between public health
interventions, seasonal effects, and vaccination strategies in managing the COVID-19 pandemic
in Spain.

In Table 3, the parameters of the Bayesian change point model for COVID-19 deaths in
Iran exhibit significant variability across the 17 segments, reflecting the dynamic nature of the
epidemic. In the initial segments, the parameter a shows both negative and positive values,
indicating fluctuations in the influence of previous predicted counts on current counts. The
parameter b generally remains positive, suggesting a reinforcing effect of past observed deaths,
particularly strong in segments 2, 6, and 15. However, as the segments progress, both parameters
demonstrate stabilization, with a approaching zero in segments 10 and 11, while b shows a
gradual decline in its influence. The variability in these parameters highlights the changing
relationships between past predictions, observed counts, and covariates, emphasizing the model’s
ability to capture the evolving dynamics of the epidemic in response to public health measures
and changing circumstances.

5.2 Impact of public health measures and vaccination on reducing COVID-19
deaths in the USA

In this subsection, we investigate the impact of public health measures and vaccination efforts on
the reduction of COVID-19 deaths in the USA . Utilizing the Bayesian change point for Model
(1), we aim to identify significant shifts in the trends of confirmed cases and mortality rates
in response to various interventions. By analyzing data from this country, we seek to quantify
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the effectiveness of these measures over time, providing insights into their role in controlling
the pandemic and informing future public health strategies. In this analysis, we examine the
total number of deaths attributed to COVID-19 as the response variable. To explore the factors
influencing this outcome, we include several covariates: the logarithm of the total number of
vaccinations administrated (x;), the duration of school closures (x;), and the extent of stay-at-
home orders implemented during the pandemic (x3).

Figure 6 illustrates the detected change points for COVID-19 related deaths in the United
States during the specified period. Below, we provide a detailed explanation of the timing and
context surrounding these identified change points.

The change points identified from April 1, 2021, to November 30, 2021, illustrate critical
transitions in COVID-19 mortality trends in the United States, largely driven by vaccination
efforts and public health interventions. The first change point on 2021-04-20 aligns with the
expansion of vaccine eligibility, particularly for adults, which significantly increased vaccination
rates (Centers for Disease Control and Prevention, 2021). By 2021-05-25, the CDC updated
its guidance to reflect the growing number of vaccinated individuals, allowing for relaxed mask
mandates, which likely influenced public behavior and contributed to a decline in deaths (Cen-
ters for Disease Control and Prevention, 2021). The change point on 2021-06-19 coincides
with the onset of summer, traditionally associated with lower transmission rates, although by
2021-07-15, the emergence of the Delta variant began to reverse these trends, leading to in-
creased cases and deaths (World Health Organization, 2021). The subsequent change point on
2021-08-19 marked a resurgence in deaths as schools reopened and community transmission
increased, while by 2021-09-13, public health officials noted a concerning rise in hospitaliza-
tions and deaths among unvaccinated populations (Centers for Disease Control and Prevention,
2021). On 2021-10-18, the impact of ongoing vaccination campaigns was evident, yet rising
cases persisted, culminating in the change point on 2021-11-09 with the authorization of the
Pfizer vaccine for children aged 5-11, marking a significant shift in vaccination strategy aimed
at reducing mortality in younger populations (U.S. Food and Drug Administration, 2021).

The parameter estimates from the Poisson time series model for COVID-19 deaths in the U.S.
reveal significant variability across the nine segments in Table 4. The parameter a fluctuates from
a slight positive value in Segment 1 (0.0012) to a notable negative value in Segment 2 (-0.30231),
indicating a shift in the influence of previous predictions on current counts. The parameter b
shows a strong positive influence in Segment 1 (1.8623) and an even higher value in Segment
2 (10.1215), reflecting a surge in deaths, but drops significantly in later segments, indicating
stabilization. The covariate parameters cj, ¢z, and ¢3 exhibit varying effects, with ¢, showing a
strong negative impact in Segment 4 (-1.5203), suggesting effective public health measures, while
d fluctuates, indicating changes in the baseline death rate. Overall, these changes highlight the
complex interactions between vaccination, public health interventions, and COVID-19 mortality
dynamics.

5.3 Forecasting

The coronavirus pandemic exhibits a series of distinct epidemic phases, as demonstrated by
the nonuniform and fluctuating growth rates of confirmed cases. This variability indicates that
any prediction or forecasting model that assumes stationarity and stability within the time
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series is likely to be inaccurate. Traditional models that do not account for these fluctuations
may fail to capture the underlying dynamics of the epidemic, leading to misleading forecasts
and ineffective public health responses. From the perspective of change point detection, a
more natural and straightforward approach is to first segment the time series into periods that
display relative stability in their behavior. This segmentation allows for the identification of
distinct phases of the epidemic, each characterized by its own growth patterns and trends. By
isolating these segments, analysts can better understand the factors influencing each phase,
such as public health interventions, changes in population behavior, and the emergence of new
variants. Following this segmentation, forecasts can be generated based on observations from
the most recent segment. This methodology not only enhances the accuracy of predictions but
also provides valuable insights into the evolving nature of the pandemic. Moreover, it enables
policymakers and public health officials to tailor their strategies to the specific conditions of each
phase, ultimately improving the effectiveness of their responses. This approach is supported
by the works of Pesaran and Timmermann (2002), Bauwens et al. (2015) and Jiang et al.
(2022), which emphasize the importance of recognizing structural changes in the data for more
accurate modeling and forecasting in the context of complex and dynamic phenomena such as
the coronavirus pandemic.

The method was backtested to generate short-term forecasts of COVID-19 deaths in Japan.
In this analysis, daily COVID-19 cases in the country were treated as covariates. Specifically,
forecasts were generated for a one-month period, commencing on May 1, 2020. Panel b of Figure
7 displays the actual values alongside the forecasted values for Total COVID-19 deaths in Japan
from May 1 to May 30, 2020, as generated by Model 1. Overall, the model provides reasonable
short-term forecasts with acceptable accuracy. However, it is important to note that the method
is less effective for long-term forecasting, particularly when the data exhibits significant changes.
As observed, the forecasting values are highly valid and reliable during the initial days of the
month; however, by the end of the month, the forecasts demonstrate a degree of inaccuracy.
This discrepancy can be attributed to changes in the behavior of the pandemic. Therefore, it is
crucial to consider segmented methods for forecasting and predicting the trajectory of contagious
diseases, as they can better account for the dynamic nature of such outbreaks. Panel a of Figure
7 presents the Total deaths in Japan form April 1, 2020 to July 15, 2020, highlighting three
detected change points during this period.

6 Conclusion

In this paper, we presented an autoregressive regression time series model tailored for Poisson
responses, aimed at analyzing COVID-19 infection and mortality curves across various covari-
ates. We introduced an adapted RIMCMC segmentation algorithm to estimate multiple change
points. Our simulation studies and real-world applications illustrated the model’s accuracy and
its potential to enhance public health decision-making during the COVID-19 pandemic.
Applying our methodology to COVID-19 data from multiple countries, we successfully iden-
tified both significant and subtle trends, demonstrating high sensitivity to changes. Notably, the
detected change points correlated with public health interventions and vaccination campaigns,
indicating that the effects of these factors on disease spread evolved over time. This framework
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Table 1: The squared root of the mean of evaluated
squared errors of each parameter in (7).

Segment 1 Segment 2
Parameters +MESE Parameters +MESE
ap 0.058 a 0.9044
by 0.022 by 0.079
c1 0.049 ¢ 0.178
di 0.5908 d> 0.3035

Table 2: The squared root of the mean of the evaluated squared errors of each param-

eter in (8).
Segment 1 Segment 2 Segment 3 Segment 4
parameters VMESE parameters VMESE parameters MESE parameters VMESE
ay 0.025 a 0.018 as 0.042 ay 0.010
by 0.030 by 0.007 b3 0.072 by 0.033
cl 0.034 ¢ 0.016 c3 0.147 c4 0.082
dy 0.133 dr 0.002 ds 0.049 dy 0.110

not only elucidates the drivers of COVID-19 transmission but also aids in formulating effective
mitigation strategies.

While our approach is based on certain assumptions and limitations related to prior and
proposal functions, it relies solely on publicly accessible data. We believe our model enriches
the existing literature on COVID-19 by complementing mechanistic models with robust in-
sample and out-of-sample predictions. Furthermore, the autoregressive regression framework
and RJMCMC method may be applicable to other infectious disease outbreaks characterized by
dynamic parameter shifts.
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from CRAN. The data is originally sourced from COVID-19 Data Hub; see Guidotti (2022).
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Figure 1: Panel a: Total confirmed cases in Iran and Spain from April 10, 2020, to October 30,
2021. Panel b: Total deaths in Iran and Spain from April 10, 2020, to October 30, 2021.
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Algorithm 1 The Proposed RIMCMC Algorithm

Require: (€79 o? ke, kya) either randomly or deterministically.

0

PR LI QPRI

cfori=1,...,7 do
SM movement- Update the number and the location of change points with proposed k'
and €’ from the proposal densities.
(EPD, a2 k)« (P a2 pi-1 il
while i <N do
Generate &’
if K =k+1 then {Birth step}
Randomly select the segment number s* to split.
Generate &+ at random in the s*th segment and update €.
Update a2 using the appropriate formula.
Compute acceptance probability A; and generate v ~ % (0,1).
if Ay > v then
Generate S(p’q);, s=ss5*+1, by ARS algorithm.
Save E := (6(1’4)/,()42/,1{’,6’) and set i< i+ 1.
else
Go back to select s*.
end if
else[k’ = k— 1] {Death step}
Randomly choose & and remove it from € to obtain €’.
OCSZ*, — /02 (XSZ*H and generate 5(1’7‘1);*.
Compute acceptance probability A, and generate v ~ % (0,1).
if A, > v then
Generate € (p’q);* by ARS algorithm.
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WM movement- use the data within each segment to generate the updates 5(”"1)/ and
a’.
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Update € with the new value for &g.
Calculate acceptance probability Az and generate v ~ % (0,1).
if A3 > v then
Update a2 via the Gibbs sampler.
Update the coefficients €79 using ARS.
Save E := (5(1’7’1)/,042/,15,5’).
else
Go back to select a new change point.
end if
end for=0
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Table 3: Estimations, including standard errors, of the Poisson time series model applied to the COVID-19 deaths dataset
in Iran. This analysis utilizes the logarithm of the total administered tests and the total confirmed cases as covariates. The
dataset spans from April 10, 2020, to October 30, 2021, and is divided into 17 segments, with five parameters estimated for

each segment.

7 Segment 7

a

b

C1

d

i

© 00O Ok W

-1.0807 (0.5437)
-0.3087 (0.0746)
1.1003 (0.3456)
-1.4946 (1.0276)
0.4769 (0.9205)
-1.4659 (0.2708)
-1.602 (0.3945)
1.3020 (0.3500)
0.2840 (0.3756)
0.00109 (0.0324)
0.0777 (0.8008)
0.5987 (0.1267)
-0.4265 (0.0524)
-0.5959 (0.2109)
-1.1527 (0.0950)
1.7230 (0.4789)
-0.4094 (0.02)

0.7473 (0.2543)
1.9667 (0.3354)
0.6947 (0.7543)
2.1091 (0.6002)
1.1886 (1.020)
2.3436 (0.0214)
1.0993 (0.8002)
0.3862 (0.2901)
1.4862 (1.0452)
0.6483 (0.5278)
1.0347 (0.6543)
1.32054 (0.4534)
0.5533 (0.7500)
0.8422 (0.8300)
2.6188 (0.9987)
0.8007 (0.2505)
2.1373 (0.02)

-0.0011 (0.6207
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0.0051 (0.9012
-0.0095 (0.3451
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-0.0046 (0.3882)
-0.0079 (0.2500)
0.0051 (0.634
0.0019 (0.198
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-0.8977 (0.3845)
-0.0076 (0.7654)
-0.0019 (0.4251)
0.0014 (0.5987)
-0.0021 (0.02)

———=

5)
7)
0)
5)
)

(%)
0.0015 (0.8405)
0.0014 (0.1890)
-0.0070 (0.4001)
-0.0162(0.0050)
0.0009 (0.4409)
0.0010 (0.6634)
0.0012 (0.5432)
0.0009 (0.0550)

0.00103 (0.7432)
0.0009 (0.0264)
0.013 (0.0902)

0.01390 (0.5789)
0.0175 (0.8342)
0.0120 (0.3098)
0.0168 (0.1005)
0.0084 (0.3054)
0.0079 (0.02)

0.7703 (0.7890)
0.3283 (1.0526)
-1.3630 (0.2342)
0.4031 (0.0703)
0.3078 (0.5802)
-0.5215 (1.03)
1.1756 (0.7365)
0.3757 (0.9102)
-1.3106 (1.0210)
-0.0809 (0.4932)
-1.8303 (0.1456)
-1.8617 (0.0334)
-0.1452 (0.6500)
1.3942 (0.6457)
0.4474 (0.2056)
-1.4603 (0.6843)
-0.8996 (0.02)
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Abstract. In statistical analysis, understanding and quantifying uncertainty is fundamental.
Measures such as entropy, extropy, varentropy, and varextropy provide valuable insights into the
characteristics of probability distributions. This paper focuses on the concept of varextropy and
presents a novel characterization of the uniform distribution, showing that the varextropy of a
random variable is zero if and only if the variable is uniformly distributed on the unit interval.
Building on this property, we propose a new goodness-of-fit test for uniformity based on a
nonparametric estimator of varextropy, denoted by K, as introduced by Noughabi and Noughabi
(2024). The test statistic is shown to be consistent, and its distribution under the null hypothesis
is explored via Monte Carlo simulations. Critical values are tabulated for various sample sizes
and tuning parameters, and the test’s power is empirically evaluated against alternatives such
as the Beta(1,2) distribution, demonstrating superior performance in detecting departures from
uniformity. The proposed method is further applied to a real-world environmental dataset of
vinyl chloride concentrations, where the transformed data, via the probability integral transform,
are shown to conform to a uniform distribution. Overall, this study not only extends the
theoretical understanding of varextropy but also introduces a practical and effective tool for
uniformity testing in both simulated and real data contexts.

Keywords:  Entropy, Extropy, Goodness-of-fit, Monte Carlo simulation, Nonparametric estimator, Order
statistics, Uniformity test, Varextropy.

1 Introduction

Quantifying uncertainty in random variables is a central theme in probability theory, informa-
tion theory, and statistical inference. Various measures have been developed to capture different
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aspects of uncertainty, variability, and information content associated with probability distribu-
tions. Among the most widely known and utilized is Shannon’s entropy, introduced by Shannon
(1948), which provides a foundational measure of the average uncertainty or information con-
tent in a random variable. For an absolutely continuous random variable, entropy reflects the
expected value of the negative logarithm of its probability density function (pdf) and plays a
critical role in areas such as data compression, communication theory, and statistical model-
ing. Complementing entropy is the concept of extropy, proposed by Lad et al. (2015) as a dual
measure of uncertainty. While entropy captures average surprise or unpredictability, extropy is
designed to assess the regularity and concentration in the distribution of a continuous random
variable. Defined in terms of the squared density function, extropy offers a different perspective
on information, with applications in decision theory and statistical diagnostics. To understand
not just the mean behavior but also the variability of information content, the notion of varen-
tropy is employed. Varentropy, introduced by Arikan (2016), is the variance of the information
content (i.e., the log-density). It quantifies the dispersion around the average uncertainty and is
particularly useful in finite blocklength information theory, where variability in data coding and
transmission must be accounted for. Varentropy has also gained attention in statistical contexts
as a more sensitive alternative to classical measures such as kurtosis, especially when analyzing
continuous distributions. Building on these concepts, the measure of wvarertropy has recently
been introduced to extend the idea of extropy by incorporating variability. Analogous to varen-
tropy, varextropy captures the variance of the density function itself, providing insights into the
fluctuation of distribution concentration. This new measure broadens the information-theoretic
toolkit for studying distributional properties and can offer useful characterizations of specific
distributions, such as the uniform distribution. The interplay between these four measures—
entropy, extropy, varentropy, and varextropy—opens up new avenues for theoretical exploration
and practical applications, particularly in statistical testing, distribution characterization, and
information processing. This paper focuses on the properties and applications of varextropy,
particularly in the context of testing for uniformity.

Testing for uniformity is a fundamental problem in statistical analysis with wide-ranging ap-
plications across various fields, including quality control, cryptography, simulation, and goodness-
of-fit testing. The uniform distribution often serves as a benchmark or null model in many statis-
tical procedures. For example, in simulation studies, ensuring that random number generators
produce values that are uniformly distributed is essential for the validity of results. Similarly,
in goodness-of-fit testing, the uniform distribution is commonly used to assess whether observed
data deviate significantly from a theoretical model. Moreover, many statistical transformations
and procedures assume an underlying uniformity, especially in the context of probability inte-
gral transforms. As such, reliable tests for uniformity are crucial for validating assumptions,
detecting structure in data, and supporting the development of robust statistical methodologies.
This motivates the exploration of new approaches, such as those based on information-theoretic
measures like varextropy, to enhance the sensitivity and applicability of uniformity tests.

Although varextropy is a relatively recent addition to the family of information-theoretic
measures, it has begun to draw interest for its potential applications in characterizing proba-
bility distributions. Previous studies have explored the mathematical properties of varextropy
and demonstrated its sensitivity to distributional shape and concentration. However, its use in
formal hypothesis testing, particularly for assessing uniformity, remains limited in the literature.
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Existing uniformity tests are primarily based on classical approaches such as the Kolmogorov—
Smirnov test, Cramér-von Mises criterion, and entropy-based methods. In contrast, this work
introduces a novel test procedure that leverages the variance of the squared density, varextropy,
as a means to detect deviations from the uniform distribution. By establishing a new character-
ization of the uniform distribution through varextropy, we extend its utility beyond descriptive
analysis and into inferential statistics. Our method differs from earlier work in that it provides
a nonparametric, information-theoretic framework for uniformity testing, offering a potentially
more sensitive alternative to traditional approaches. Furthermore, we evaluate the effectiveness
of the proposed test through both theoretical derivations and empirical analyses using real-world
data, thereby demonstrating its practical relevance. The entropy of a discrete probability distri-
bution P = {py,...,pn} is defined as (Shannon, 1948) H(P) = —Y, piInp;. The varentropy of a
discrete probability distribution P = {py,...,pn} is defined as (see Arikan (2016); De Crescenzo
et al. (2025); Maadani et al. (2022))

2

n n

VH(P) = Zpi (lnp,-)2 - (Z pilnpi> .
i=1 i=1

Varentropy serves as a measure of the variability in the information content.

Lad et al. (2015) introduced the concept of extropy, which is the complement of Shannon entropy.

The extropy of a discrete probability distribution P = {py,...,p,} is defined as

J(P): (l_pl)ln(l_pl)

'M=

i=1

Let X be an absolutely continuous random variable with common cumulative distribution func-
tion (cdf) Fx and probability density function (pdf) fx. Let Ix =inf{x € R: Fx(x) > 0},ux =
sup{x € R: Fx(x) < 1} and Sx = (Ix,ux). Then, Shannon (1948) defined differential entropy as a
measure of uncertainty

- /S Fe () log fix (x) dx.
X
Varentropy of X is defined as (Arikan, 2016; Maadani et al., 2022)
H(X) = Var|— log fy (X))

— /Sxfx(x)(logfx(x))zdx— </Sx fx(x)10gfx(x)dx>2.

This varentropy measure is widely used in data compression, finite blocklength information
theory, and statistics, as it aids in determining ideal code lengths, source dispersion, and other
relevant quantities. In statistics, it has proven to be a superior alternative to the kurtosis
measure for continuous density functions; see (Arikan, 2016; Dudewicz and van der Meulen,
1981; Hazeb et al., 2021; Maadani et al., 2022) studied entropy- and extropy-based goodness-
of-fit tests for uniformity. An alternative measure of uncertainty, extropy, for a nonnegative
absolutely continuous random variable X, defined by Lad et al. (2015), is given by

10 =8 (~3:00) =3 [ it
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The primary objective of this study is to investigate the properties of varextropy and demonstrate
its potential in testing for the uniformity of continuous probability distributions. Specifically,
we aim to derive and explore the theoretical properties of varextropy, provide a characterization
of the uniform distribution based on this measure, and develop a nonparametric estimator for
varextropy from observed data. Additionally, we propose a novel test for uniformity that lever-
ages varextropy, extending its applicability beyond descriptive analysis into inferential statistics.
Finally, we evaluate the performance of the proposed test through both theoretical analysis and
empirical validation using real-world data to assess its effectiveness in detecting deviations from
the uniform distribution.

The main purpose of this paper is to obtain a test of uniformity using the derived charac-
terization of the uniform distribution based on the varextropy of a continuous random variable.
This paper is organized as follows. Section 2 contains some properties of varextropy. A charac-
terization of the uniform distribution using varextropy is given in Section 3. A nonparametric
estimator is given in Section 4. A test of uniformity is presented in Section 5, and Section 6
contains an application to real data.

2 Varextropy

The varextropy of a discrete probability distribution P = {py,...,p,} is defined as (see, Goodarzi
(2024); Vaselabadi et al. (2021))

2
VJ(P) =Y (1—pi) (In((1—p;)))* = <Z(1 —pi)In((1 —pi))> :

i=1 i=1

Varextropy also serves as a measure of the variability in the information content. Varextropy of
absolutely continuous random variables X is defined as

VJ(X) = Var (—;fx (x>> _E (—;fx(X) —J(X))2

- %E(f)%(X)) - i[E(fx(X))]2

2
SIS (/Sxf%(x)dx> .

Note that VJ(X) > 0, for any random variable X. Vaselabadi et al. (2021) obtained several varex-
tropy properties, as well as conditional varextropy properties based on order statistics, record
values, and proportional hazard rate models. The article contains some comparative results
regarding varextropy and varentropy. Goodarzi (2024) provided lower bounds for varextropy,
obtained the varextropy of a parallel system, and used the varextropy of order statistics to con-
struct a symmetry test. Zaid et al. (2022) computed the entropy, varentropy, and varextropy
measures in closed form for generalized and g-generalized extreme value distributions. Varen-
tropy is sometimes independent of the model parameters, whereas the varextropy measure is
more adaptable, for example, when X has a normal distribution with mean g and variance ¢
(see Vaselabadi et al. (2021)).
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Chacko and Grace (2024) investigated the varextropy measure for the nth upper and lower
k-record values, deriving expressions for both the measure and its residual and past forms. They
applied this to estimate the varextropy of a two-parameter Weibull distribution using maximum
likelihood estimations (MLEs) and Bayes estimates based on upper k-record values, with MCMC
used for the Bayes estimates. Their simulation results showed that mean squared errors (MSEs)
decreased as n increased, and Bayes estimates outperformed MLEs. Among the Bayes estimators,
those using the SEL function performed better, and the lowest MSE was achieved using Prior
1. Goodarzi (2022) derived the conditional covariance and variance for a parallel system with
n identical, independent components, assuming all components are still functioning at time x.
A lower bound for the conditional variance was also provided. Additionally, lower bounds for
varextropy were established, and the varextropy of a parallel system was calculated. The results
were applied to create a symmetry test, with a real dataset used to illustrate the test statistics.
Vaselabadi et al. (2021) explored several properties of the varextropy measure VJ, highlighting
its use in quantifying information volatility in residual and past lifetimes. They examined its
behavior in relation to order statistics, record values, and proportional hazard rate models. An
approximate expression for V.J(X) was also derived using a Taylor series expansion. Additionally,
they introduced the concept of conditional varextropy and proposed a new stochastic order called
varextropy ordering. Noughabi and Noughabi (2024) investigated the varextropy of a random
variable and introduced consistent estimators for it, highlighting their location-invariant variance
and mean squared error. Through Monte Carlo simulations, they evaluated the estimators’ bias
and RMSE under different distributions, showing that the proposed methods performed reliably
across various scenarios.

In some situations, two random variables can have the same extropy, which prompts the
age-old question, “Which of the extropies is a more appropriate criterion for measuring the
uncertainty?” For example, consider random variables U and V (see, Balakrishnan et al. (2020))
with pdfs

0, otherwise, 0, otherwise.

1, 0<x<l, 27, x>0,
fU(x):{ and fv(x):{

We get J(U) =J(V)=—1/2, VJ(U) =0, and VJ(V) = 1/12. This is the motivation behind
considering the variance of —% f(x), which is known as the varextropy of a random variable X.
So, varextropy can also play a role in measuring uncertainty. The varextropy for some standard
distributions are given in Table 1; for more example, see Vaselabadi et al. (2021).

Let {X,,n > 1} be a sequence of independent and identically distributed observations. An
observation X; will be called an upper record value if its value exceeds that of all previous
observations. Thus, X; is an upper record if X; > X; for every j > i. See, Arnold et al. (1998)
for more details about record values. A random variable X is said to be smaller than Y in the
dispersive ordering (X <z, ¥) if Fy '(Fx(x)) —x is increasing in x > 0. Belzunce et al. (2001)
showed that if X <y, Y, then Uf <disp U,f, where U,f and U,{ are the nth upper records of X
and Y, respectively. Qiu (2017) showed that if X <y, ¥, then J(X) <J(Y) and J(UX) <J(UY).
Vaselabadi et al. (2021) showed that if X <gi, Y, then VJ(X) > VJ(Y). In view of these results,
it is conclude that X <y, ¥, then VJ(UX) > VJ(UY), for n > 1. It is obvious that if X and Y are

identically distributed, that is, X 2y, then VJ(X) =VI(X), VI(X;,) = VI(Y;,) and VJ(UX) =
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Table 1: Expression for VJ(X).

Distribution pdf VI(X)
Uniform bia, a<x<b 0
Exponential Ae ™ x>0,1>0 A?/48
Weibull distribution | 2xe ™", x>0 2% -3
Normal Zlme(_trg#)’ —ooJlx < oo 1627;0\2[\36
Laplace distribution %e"x‘ —oo < x < oo ﬁ
Logistic distribution ﬁ, —o < x< oo :
Cauchy distribution ”(llﬂz), —oo L x < 0 é Tlﬂz

VJ(UY), where X;, is the ith order statistic in a random sample of size n. Vaselabadi et al. (2021)
showed that varextropy is location-invariant but not scale-invariant, that is, if ¥ = aX + b, where
a>0and —eo < b < oo, then VJ(Y) = a%VJ(X).

We have the following result for varextropy of order statistics of symmetric distribution.

Lemma 1. Let X1,Xs,...,X, be random sample from continuous distribution with symmetric
around o finite L with sample size n. Then

VJ(Xi:n) = VJ(aniJr]:n)a 1<i<n.

Proof. The result follows by location-invariant property of varextropy. O

3 Weighted varextropy

Applications of weighted distributions include distribution theory, dependability, probability,
ecology, biostatistics, and applied statistics. Two random variables can have the same extropy
as well as the same varextropy in some situations. For example, consider random variables X
and Y with pdfs, respectively:

fx(x):{zx, 0<x<l, fy(x):{Z(l—x), 0O<x<l,

0, otherwise, 0, otherwise.

We get J(X)=J(Y)=-2/3, VIX)=VJ(Y)=1/18, but VJ"(X)=1/12 and VJ¥(Y) = 1/180.
So here, weighted varextropy can also play a role as a measure of uncertainty. Gupta and
Chaudhary (2023) defined general weighted extropy with nonnegative weight w(x) as

1 =S}

JW(X) = 75 ) w

(x) /3 (x) dx.
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Table 2: Expression for VJ*(X).

Distribution pdf VJ(X)
Uniform bl—a, a<x<b i{%—%J
Exponential Ae ™ x>0,1>0 %
Weibull distribution 2xe’x2, x>0 i (3% — 1)

(x=p)? 2
Normal 217r0'e( 7, —w<x<e | ((2;1012)3/2 (12 +502) = '“2>
Laplace distribution %e"x‘ —oo L x < o0 ﬁ
Logistic distribution (1+e;;)2’ —o0 < x < oo %
Cauchy distribution ”(llﬂz) , —olx< oo ; 6lﬂ2

We define the general weighted varextropy of a discrete probability distribution P = {pi,...,pn}
with X = {x1,x2,...,%,} and weights w = {wj,wo,...,w,} as

i=1 i=1

2
vJ'(P)=Y wi(1—p;)(In((1 —pi)’ — (Zwi(l —pi)In((1 —Pi))> ~

When w; =x;, Vi=1,2,...,n, then the weighted varextropy is given as

2
VI (P) =Y %7 (1= pi) (In((1 = pi)))* = (Zm(l —pi)In((1 pi))) :

i=1 i=1
We define general weighted varextropy for an absolutely continuous random variable as

VI (0) = Var (- w0 (X) )

= 1 [EOR()200) ~ (EOw(X) e (X))

_ % [/S W2 (x) £ () dx — (/wa(x)fz(x)dxﬂ .

When w(x) = x, then weighted varextropy is given as

VJIX(X) = % {/Sxxzf*%(x)dx— </Sxxf2(x)dx)2} :

The weighted varextropy VJ*(X) for some standard distributions are given in Table 2.
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4 A characterization of uniform distribution

In many practical problems, the goodness-of-fit test may be reduced to the problem of testing
uniformity. Since the varextropy of X is the variance of f% fx(x), the varextropy is nonnegative
for any random variable X. Among all distributions with support on [0, 1], the uniform distri-
bution has the maximum extropy. An important property of the uniform distribution is that it
obtains the minimum varextropy among all distributions having support on [0,1] (see, Qiu and
Jia (2018)).

The characterization provided in Theorem 1 is significant because it establishes a clear and
definitive criterion for identifying a uniform distribution based on varextropy. By showing that
a random variable X has zero varextropy if and only if it is uniformly distributed over [0, 1], it
offers a direct and precise method for testing uniformity without needing complex parametric
assumptions. This improves upon existing characterizations by linking uniformity to an easily
computable quantity, varextropy, which is grounded in variance, making it more practical for
statistical analysis. Previous methods might have relied on more complex or indirect approaches,
but the varextropy-based test is simple, theoretically sound, and offers a direct comparison for
uniformity. This approach fills a gap by providing a nonparametric and computationally feasible
solution to uniformity testing, making it a more accessible tool in both theoretical and applied
statistics.

The characterization in Theorem 1 makes a few key assumptions. First, it assumes that the
random variable X is continuous and has support on the interval [0,1]. This is crucial because
the result specifically applies to distributions confined to this interval, such as the uniform distri-
bution. Second, the characterization assumes that the pdf fx(x) is well-defined and continuous
over this support. This ensures that the varextropy formula, which relies on the second moment
of the pdf, can be computed without encountering issues related to discontinuities or undefined
behavior. Additionally, the proof assumes that fx(x) integrates to 1 over [0,1], which is a fun-
damental property of any valid probability density function. These assumptions are necessary
to guarantee the correctness and applicability of the characterization, ensuring it is valid for
continuous distributions on the unit interval and can be used as a reliable test for uniformity.
Noughabi and Noughabi (2023) applied varentropy to test for uniformity. They showed that the
varentropy of X is zero if and only if X follows the standard uniform distribution, and they used
their proposed varentropy estimators as test statistics for conducting goodness-of-fit tests for
uniformity. Following result is a characterization of the uniform distribution using varextropy
(see (Chaudhary and Gupta, 2024, Theorem 11)).

Theorem 1. Let X be a continuous random variable with support on [0,1]. Then VJ(X) =0 if
and only if X has a uniform distribution on the interval [0,1].

Proof. Let random variable X have a uniform distribution on the interval [0, 1]; then fx(x) =1
for 0 <x <1, and

VI(X) = i/olfs(x)dx_i Uolfz(x)dxr =0.
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Conversely, VJ(X) =0 implies Var(fx(X)) =0, that is, fx(x) =c. Since
1
/ fx(x)dx=1, therefore fx(x)=1, 0<x<I1.
0
Hence, the proof is complete. O

5 Nonparametric estimators

Suppose that Xi.,,X2:1, X3, - .., Xy are order statistics of random sample X;,X>,...,X, from cdf
F. Then, then empirical distribution function of cdf F is given by

0, x<X1;n
F(x) =9 % Xy <x<Xipprm, i=12,...,n—1,
I, x> Xun-

Noughabi and Noughabi (2024) provided various estimators of VJ(X). VJ(X) can be expressed

vioo =1 [ (Leon) ap- ( A ([Z)(F%m))_ldp)z

Following the idea of Vasicek (1976), Noughabi and Noughabi (2024) proposed the estimator A

for VJ(X) as
1 & 2m/n 11y 2m/n ’
A=— | —=| — f—
4n l:ZI (Xier:n _Xim:n> 4\ n l:ZI <Xi+m:n _Xim:n>

Here, the window size m is a positive integer less than or equal to 5. If i+m > n, then we
consider X .n = Xyn, and if i —m < 1, then we consider X;_,., = X1.,. The proposed estimator
for varextropy, A, calculates the weighted variance of order statistics based on sample data, using
a window size parameter m. It is defined as

2
1 & 2m/n )2 11 ( 2m/n >
A= — > | 7| - b
4n l:ZI (Xier:n — Xi—mn 4\n l:ZI Xitmn — Xi—mn

This estimator is consistent, meaning it converges to the true value of varextropy as the sample
size increases and is flexible for a range of distributions. Its primary advantages include its
practical applicability for goodness-of-fit tests, such as testing uniformity, and its ability to offer
consistent results for large datasets. However, it is sensitive to the choice of the window size m,
and for large samples, it can become computationally intensive. Additionally, for small sample
sizes, the estimator may not be highly accurate, and its distribution under the null hypothesis
requires Monte Carlo simulations to determine critical values. Despite these limitations, the
estimator improves upon existing methods by directly utilizing order statistics and providing a
reliable approach to test uniformity.
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The proposed estimator, A, for varextropy offers several advantages when compared to other
estimators used in statistical tests for uniformity. One key feature is its use of order statistics,
which captures more nuanced information about the distribution of data, particularly in non-
parametric contexts. Compared to traditional estimators like the sample variance or methods
based on moments, A incorporates weighted variations in the sample, making it more sensitive
to the underlying distribution, especially for detecting deviations from uniformity.

When compared to earlier estimators like the ones proposed by Noughabi and Noughabi
(2023), which are based on varentropy for uniformity testing, the proposed estimator has a
distinct advantage in terms of flexibility and consistency. While their estimator is also consistent,
it is based on a more complex approach, potentially requiring additional assumptions about the
distribution shape. The A estimator, on the other hand, relies on empirical distributions and
requires fewer assumptions about the underlying data, making it more adaptable.

However, one limitation of A is its reliance on the window size parameter m, which requires
tuning and may impact its performance in smaller datasets. Other methods, like those using
bootstrap resampling techniques, can offer an alternative, providing robust estimates without
relying on window size. Overall, the proposed estimator provides a more robust and flexible
approach than many existing alternatives, particularly when testing for uniformity in real-world
data.

6 A test of uniformity

In this section, we introduce a statistical test for uniformity based on the concept of varextropy,
specifically using the estimator A proposed by Noughabi and Noughabi (2024). It has been
established that the varextropy of a random variable X is zero if and only if X follows a standard
uniform distribution. Using this property, we can utilize the proposed varextropy estimators as
test statistics for conducting goodness-of-fit tests to determine whether a given sample follows
a uniform distribution. The hypothesis of interest is framed as follows:

o Null hypothesis (Hp): The random variable X is uniformly distributed.
o Alternative hypothesis (H;): The random variable X is not uniformly distributed.

We propose using A, an estimator of the varextropy VJ(X), as the test statistic. The estimator A
is consistent, meaning that as the sample size n increases, A converges in probability to the true
value of VJ(X). Under the null hypothesis Hy, if X follows a uniform distribution, A converges
in probability to zero. On the other hand, if X is not uniformly distributed (under H;), A
converges to a nonzero value. This distinction allows us to use large values of A as evidence of
nonuniformity. Therefore, we reject the null hypothesis when A exceeds a certain threshold.

Since the distribution of the test statistic A under the null hypothesis is too complex to
derive analytically, we use Monte Carlo simulation to empirically determine the critical values
and power of the test. The critical region for the test is defined as A > C|_g, where C|_¢ is the
critical value corresponding to the significance level a. For a given sample size n and significance
level o, we compute C_ using a Monte Carlo simulation. This approach allows us to determine
the appropriate threshold for rejecting the null hypothesis based on simulated data from the
uniform distribution.
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Table 3: Critical values at significance level or = 0.05.
m\n 10 20 30 40 50 80 100
2 4.7570 3.1388 2.2838 1.9478 1.6402 1.1355 1.0451
3 1.4909 1.2126 0.7925 0.6502 0.5729 0.4235 0.3559
4 0.7064 0.6089 0.4724 0.3841 0.3434 0.2541 0.2121
5
9

0.4074 0.4252 0.3525 0.2881 0.2396 0.1800 0.1541
0.1551 0.1703 0.1542 0.1399 0.1039 0.0947

14 0.0869 0.0973 0.1006 0.0829 0.0731
19 0.0637 0.0722 0.0722 0.0665
24 0.0528 0.0639 0.0619
30 0.0514 0.0546
39 0.0380 0.0436
49 0.0336

6.1 Critical points

We define a function to calculate the value of A. A sample of size n is generated from the U(0,1)
distribution, and the test statistic is computed for the sample data. After 10,000 replications,
the (1—a)™ quantile of the test statistics is determined as the critical value at significance level
a. Critical values for o = 0.05 are given in Table 3 for different values of m and n.

To derive the critical values of the proposed test statistic Z, we employ a Monte Carlo
simulation approach due to the analytical intractability of its sampling distribution under the
null hypothesis. Specifically, we generate 10,000 independent random samples of size n from
the standard uniform distribution U(0,1), which represents the null hypothesis Hy. For each
simulated sample, we compute the value of the test statistic A using the nonparametric estimator
that involves a fixed window size m. After obtaining 10,000 such values of E, we determine the
empirical (1 —a)-th quantile to serve as the critical value Cj_y at a given significance level
a. These critical values are summarized in Table 3 for various combinations of n and m, thus
providing practical benchmarks for implementation.

6.2 Power of test

We used the following procedure to estimate the power of the test. For each sample size n, we
generate 10,000 random samples of size n from the alternative distribution. The test statistic is
then computed for each sample. The power of the test at a significance level @ is estimated as
the proportion of these 10,000 samples that fall within the corresponding critical region.

The estimated power of the test is obtained as the proportion of samples for which the test
statistic exceeds the critical value, leading to the rejection of Hy. This empirical procedure
provides a consistent and practical method for evaluating the effectiveness of the test. The
results, presented in Table 4, demonstrate that the proposed test performs well in detecting
deviations from uniformity and exhibits higher power compared to existing tests for standard
alternatives like the Beta(1,2) distribution. The pdf of the beta distribution with parameters a
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Table 4: Power at significance level o = 0.05.
m\n 10 20 30 40 50 80 100
2 0.0817 0.0966 0.0960 0.1038 0.1137 0.1492 0.1746
3 0.1197 0.1343 0.1558 0.1689 0.1836 0.2522 0.2924
4 0.1546 0.1882 0.2082 0.2302 0.2570 0.3536 0.4467
5
9

0.1786 0.2370 0.2621 0.2874 0.3359 0.4451 0.5483
0.3962 0.4360 0.4654 0.5072 0.6540 0.7211

14 0.5991 0.6221 0.6566 0.7380 0.8187
19 0.7752 0.7734 0.8311 0.8700
24 0.8875 0.8829 0.9128
30 0.9397 0.9459
39 0.9883 0.9850
49 0.9983

and b is given by

where B(a,b) is the complete beta function.

To estimate the power of the test, we again utilize a Monte Carlo simulation, this time under
the alternative hypothesis H;. We generate 10,000 random samples of size n from a nonuniform
distribution, such as the Beta(1,2) distribution, which is a common alternative to U(0,1). For
each sample, the value of A is calculated and compared to the corresponding critical value derived
under Hy.

The estimated power against the alternative Beta(1,2) distribution is given in Table 4 at
the significance level ¢ =0.05. Our test performs well in detecting nonuniform data. Note that
Beta(1,1) is identically distributed with U(0,1). The power of this test against the alternative
Beta(1,1) is approximately a, so the test achieves its level of significance. The power of our
test is higher than the power of the test proposed by Noughabi and Noughabi (2023) for the
common alternative Beta(1,2).
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6.3 Application to real data

The dataset used in this application comes from a real-world environmental study involving vinyl
chloride concentrations. Vinyl chloride is a toxic substance, and understanding its distribution
is critical for assessing environmental risks and regulatory compliance. In particular, the dataset
represents a sample of vinyl chloride measurements that have been transformed to fit a uniform
distribution using the probability integral transformation, as proposed by Xiong et al. (2022).
This transformation is commonly used to standardize nonuniform data so that it can be tested
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for uniformity.

The choice of this dataset is directly linked to our theoretical findings in the previous sections,
particularly the application of the test of uniformity based on the varextropy estimator A. As
we shown earlier, the test statistic A can effectively detect whether a dataset conforms to a
uniform distribution, which is important for validating the uniformity of the transformed data.
Given that uniformity is a key assumption in many statistical procedures, it is essential to verify
whether the transformation of the vinyl chloride concentrations actually results in data that
adheres to the uniform distribution.

For this dataset, we computed the value of the proposed test statistic A using a window size
m = 16 and sample size n = 34. The computed statistic was found to be A =0.0329. The critical
value for the test at a significance level of & = 0.05 was obtained through Monte Carlo simulation,
resulting in a critical value of 0.0733 for m = 16 and n = 34. Since the test statistic A =0.0329
is less than the critical value of 0.0733, the observed statistic lies within the acceptance region.

This outcome suggests that the transformed data conforms to the uniform distribution, and
therefore, we fail to reject the null hypothesis of uniformity. In other words, our proposed test
successfully verifies that the transformation applied to the vinyl chloride data indeed resulted
in a uniform distribution, aligning with the expectations of the transformation method.

Dataset 1: 0.0518, 0.0518, 0.1009, 0.1009, 0.1917, 0.1917, 0.1917, 0.2336, 0.2336, 0.2336, 0.2733,
0.2733, 0.3467, 0.3805, 0.3805, 0.4126, 0.4431, 0.4719, 0.4719, 0.4993, 0.6162, 0.6550, 0.6550,
0.7059, 0.7211, 0.7356, 0.7623, 0.7863, 0.8178, 0.8810, 0.9337, 0.9404, 0.9732, 0.9858.

The dataset represents vinyl chloride concentrations transformed into a uniform distribution
using the probability integral transformation (Xiong et al., 2022). The value of the test statistic
A is 0.0329 when the window size m = 16 and the sample size n = 34. The critical point is 0.0733
at the 5% level of significance, based on Monte Carlo simulations for m = 16 and n = 34. Since
the estimated value of the test statistic lies in the acceptance region, our test based on A fails
to reject the null hypothesis. Therefore, the test verifies that the data is fitted to a uniform
distribution.

The results of our uniformity test based on the varextropy estimator A indicate that the
transformed vinyl chloride data fits well with a uniform distribution. The calculated test statistic
(K =0.0329) was smaller than the critical value (0.0733) at the 5% significance level, suggesting
that we failed to reject the null hypothesis of uniformity.

However, there are several limitations and potential biases in our analysis. First, the critical
values were derived using Monte Carlo simulations, which, while accurate, are approximations
and depend on the number of replications used (10,000 in this case). Furthermore, the perfor-
mance of the test is influenced by the sample size, and our results may not generalize well to
smaller or larger samples. Another limitation is the assumption that the data under the null
hypothesis is perfectly uniform, which may not always hold in practice, especially with real-
world data where small deviations from uniformity can occur. Additionally, the window size
used in the calculation of A could impact the test’s power and its sensitivity to nonuniformity.
While the test performed well in detecting significant departures from uniformity in this case,
its ability to detect subtle differences might be limited. Moreover, the Monte Carlo method,
while effective, can introduce bias if the number of replications is not large enough or if the
underlying assumptions about the test statistic are inaccurate.
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Lastly, the choice of dataset, in this case, vinyl chloride concentrations, may not be rep-
resentative of other datasets, and the conclusions drawn here might not be directly applicable
to different contexts. Despite these limitations, the test demonstrates its utility in assessing
uniformity, and future research can refine its performance and extend its application to other
distributions.

7 Conclusion

The results of our study demonstrate that the proposed test based on the varextropy estimator
A is an effective tool for assessing the uniformity of datasets. We applied the test to real-world
vinyl chloride concentration data that had been transformed to fit a uniform distribution using
the probability integral transformation. The test statistic A =0.0329 was found to be smaller
than the critical value of 0.0733 at a 5% significance level, leading to the conclusion that the
transformed data conforms to a uniform distribution. This outcome is consistent with our
theoretical expectation that A should be small when the data follows a uniform distribution.

Moreover, the test showed strong performance in detecting deviations from uniformity when
applied to simulated data from a Beta(1,2) distribution, a common alternative to the uniform
distribution. As expected, the test’s power increased with sample size, and the critical values,
derived through Monte Carlo simulations, provided a reliable framework for determining decision
thresholds for uniformity testing at various levels of significance. These results demonstrate the
robustness and practicality of the proposed test, especially in the context of assessing uniformity
in real-world datasets.

However, the study also highlights certain limitations. The Monte Carlo simulation approach,
while effective, relies on approximations that depend on the number of replications used, and
the performance of the test can be influenced by the sample size and the choice of window
size. Additionally, the test assumes that the null hypothesis represents perfectly uniform data,
which may not always hold in practice, particularly when small deviations from uniformity exist
in real-world data. These factors suggest that while the test performs well under the given
conditions, its generalizability to other datasets and scenarios may require further investigation.

Future research could address several areas for improvement. First, exploring the test’s per-
formance with smaller sample sizes and more diverse datasets would provide insights into its
robustness and lead to better calibration of critical values. Investigating the test’s sensitivity
to a wider range of nonuniform distributions, beyond Beta(1,2), could help evaluate its applica-
bility to different data patterns. Enhancing the Monte Carlo simulation process through more
efficient sampling techniques or parallel processing could improve both computational speed and
scalability. Additionally, examining the test’s robustness to different distributional assumptions,
such as normal or skewed distributions, would further validate its flexibility.

Comparing the varextropy-based test with other established goodness-of-fit tests, such as the
Kolmogorov—Smirnov or Anderson-Darling tests, could provide valuable insights into its relative
strengths and weaknesses. Expanding the test’s application to multivariate or time-series data
could broaden its utility in domains such as finance, ecology, and other fields that deal with
complex data structures. Furthermore, implementing dynamic window size selection methods
might enhance the accuracy and adaptability of the test across various datasets.
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Lastly, applying the test to additional real-world datasets from diverse fields would help
assess its practical applicability and identify domain-specific challenges or opportunities for
refinement. Addressing these areas in future research could improve the accuracy, efficiency,
and broad applicability of the proposed uniformity test, making it a valuable tool for detecting
uniformity across a variety of statistical and applied contexts
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