Copula theory is essentially based on the use of multivariate functions, commonly called copulas. These functions provide a versatile toolset for capturing a broad spectrum of dependence structures, highlighting their indispensability in a multitude of applied domains. However, in light of the evolving complexities inherent in real-world data, there is a growing demand for pioneering copula constructions. In this paper, our main goal is to increase the field of variable-power copulas by introducing an innovative Farlie-Gumbel-Morgenstern (FGM)-type power copula. It is distinguished by a unique one-parameter formulation that recovers the independence copula. In the main part, we establish its mathematical validity, which is based on differentiation techniques, appropriate factorizations, and two complementary logarithmic inequalities. Then we provide a comprehensive exploration of its modeling properties, with a focus on its negative dependence through the beta medial correlation, rho of Spearman and tau of Kendall. The corresponding copula data generation is examined with different values of the parameter. A new bivariate normal distribution is also derived, and its shapes are discussed. Finally, the minimum and maximum of two random variables connected through the proposed copula are examined from a distributional viewpoint. Our findings contribute to the advancement of copula theory, thereby enhancing its practical utility across a wide range of disciplines.
Ali, M. M., Mikhail, N. N. and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, 405–412.
Amini, M., Jabbari, H. and Borzadaran, G. R. M. (2011). Aspects of dependence in generalized Farlie-Gumbel-Morgenstern distributions. Communication in Statistics - Simulation and Computations, 40, 1192–1205.
Arnold, B.C. and Ng, H. K. T. (2011). Flexible bivariate beta distributions. Journal of Multivariate Analysis, 102, 1194–1202.
Bairamov, I. and Kotz, S. (2002). Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions. Metrika, 56, 55–72.
Bairamov, I. G., Kotz, S. and Bekci, M. (2001). New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. Journal of Applied Statistics, 28, 521–536.
Becherini, A., Martina, M. L. and Marchi, M. (2013). Copula-based statistical analysis of environmental data. Environmentalmetrics, 24, 1–11.
Celebioglu, S. (1995). Yeni bir copulalar ailesi, Arastirma Sempozyumu. 95, Program ve Bildiriler, Ankara, 152-153, 27–29 Kasim.
Celebioglu, S. (1997). A way of generating comprehensive copulas. Journal of the Institute of Science and Technology, 10, 57–61.
Chesneau, C. (2021a). A new two-dimensional relation copula inspiring a generalized version of the Farlie-Gumbel-Morgenstern copula. Research and Communications in Mathematics and Mathematical Sciences, 13, 99–128.
Chesneau, C. (2021b). On new types of multivariate trigonometric copulas. AppliedMath, 1, 3–17.
Chesneau, C. (2022). On a weighted version of the Gumbel-Barnett copula. Innovative Journal of Mathematics (IJM), 1, 1–13.
Chesneau, C. (2023). Theoretical validation of new two-dimensional one-variable-power copulas. Axioms, 12, 392.
Domma, F. and Giordano, S. (2012). A copula-based approach to account for dependence in stress-strength models. Statistical Papers, 54, 807–826.
Durante, F. and Sempi, C. (2016). Principles of Copula Theory. CRS Press, Boca Raton.
El Ktaibi, F., Bentoumi, R., Sottocornola, N. and Mesfiui, M. (2022). Bivariate copulas based on counter-monotonic shock method. Risks, 10, 202.
Embrechts, P., Klüppelberg, C. and Mikosch, T. (2001). Modelling extremal events: for insurance and fiance (Vol. 33). Springer Science & Business Media.
Izadkhah, S., Ahmadzade, H. and Amini, M. (2015). Further results for a general family of bivariate copulas. Communications in Statistics-Theory and Methods, 44, 3146–157.
Jaworski, P. (2023). On copulas with a trapezoid support. Dependence Modeling, 11, 20230101.
Joe, H. (2015) Dependence Modeling with Copulas. CRS Press, Boca Raton.
Korkmaz, M. Ç. (2020). The unit generalized half normal distribution: A new bounded distribution with inference and application. UPB Scientifi Bulletin, Series A: Applied Mathematics and Physics, 82, 133–140.
Korkmaz, M. Ç. and Chesneau, C. (2021). On the unit Burr-XII distribution with the quantile regression modeling and applications. Computational and Applied Mathematics, 40, 1–26.
Martínez-Flórez, G., Lemonte, A. J., Moreno-Arenas, G. and Tovar-Falón, R. (2022). The bivariate unit-sinhnormal distribution and its related regression model. Mathematics, 10, 3125.
Mazucheli, J., Menezes, A. F. B. and Dey, S. (2019). Unit-Gompertz distribution with applications. Statistica, 79, 25–43.
Michimae, H. and Emura, T. (2022). Likelihood inference for copula models based on left truncated and competing risks data from field studies. Mathematics, 10, 2163.
Mirhosseini, S. M., Amini, M. and Dolati, A. (2015). On a general structure of the bivariate FGM type distributions. Applications of Mathematics, 60, 91–108.
Morgenstern, D. (1956). Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt für Mathematische Statistik, 8, 234–235.
Nadarajah, S., Shih, S.H. and Nagar, D. K. (2017). A new bivariate beta distribution. Statistics, 51, 455–474. Nelsen, R. B. (2006). An Introduction to Copulas. 2nd ed. Springer Science+Business Media, Inc.: Berlin, Germany. R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org.
Rodríguez-Lallena, J. A. and Úbeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315–325.
Shih, J.-H., Konno, Y., Chang, Y.-T. and Emura, T. (2022). Copula-based estimation methods for a common mean vector for bivariate meta-analyses. Symmetry, 14, 186.
Sklar, A. (1959). Fonctions de repartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, 8, 229–231.
Susam, S. O. (2020a). Parameter estimation of some Archimedean copulas based on minimum Cramér-von-Mises distance. Journal of The Iranian Statistical Society, 19, 163–183.
Susam, S. O. (2020b). A new family of Archimedean copula via trigonometric generator function. Gazi University Journal of Science, 33, 806–813.
Taketomi, N., Yamamoto, K., Chesneau, C. and Emura, T. (2022). Parametric distributions for survival and reliability analyses, a review and historical sketch. Mathematics, 10, 3907.
Yeh, C.-T., Liao, G.-Y. and Emura, T. (2023). Sensitivity analysis for survival prognostic prediction with gene selection: A copula method for dependent censoring. Biomedicines, 11, 797.
Chesneau, C. (2024). Investigation of a variable-power FGM-type copula. Stochastic Models in Probability and Statistics, 1(1), 17-36. doi: 10.22067/smps.2024.45178
MLA
Chesneau, C. . "Investigation of a variable-power FGM-type copula", Stochastic Models in Probability and Statistics, 1, 1, 2024, 17-36. doi: 10.22067/smps.2024.45178
HARVARD
Chesneau, C. (2024). 'Investigation of a variable-power FGM-type copula', Stochastic Models in Probability and Statistics, 1(1), pp. 17-36. doi: 10.22067/smps.2024.45178
CHICAGO
C. Chesneau, "Investigation of a variable-power FGM-type copula," Stochastic Models in Probability and Statistics, 1 1 (2024): 17-36, doi: 10.22067/smps.2024.45178
VANCOUVER
Chesneau, C. Investigation of a variable-power FGM-type copula. Stochastic Models in Probability and Statistics, 2024; 1(1): 17-36. doi: 10.22067/smps.2024.45178
Send comment about this article