On some bivariate integer valued distributions on Z²

Document Type : Original Article

Authors

Department of Statistics and Operations Research, Kuwait University, Kuwait

Abstract

‎We proposed and studied a new bivariate random sign transformation of nonnegative bivariate integer-valued distributions‎. ‎This transformation develops new bivariate integer-valued distributions on $Z^{2}$. We applied the new transformation to the bivariate Poisson  and the bivariate geometric distributions‎. ‎As an illustration‎, ‎we fitted a real-life data set developed based on the results of the 2019 UEFA Europa League using the new distributions‎.
 

Keywords


  1. Aly, E.-E. (2018). A unified approach for developing Laplace-type distributions. Journal of the Indian Society for Probability and Statistics, 19, 245–269.
  2. Bulla, J., Chesneau, C. and Kachour, M. (2015). On the bivariate Skellam distribution. Communications in Statistics-Theory and Methods, 44, 4552–4567.
  3. Chesneau, C., Kachour, M. and Bakouch, H. S. (2018). A family of bivariate discrete distributions on Z2based on the Rademacher distribution. In ProbStat Forum, 11, 53–66.
  4. Genest, C. and Mesfioui, M. (2014). Bivariate extensions of Skellam’s distribution. Probability in the Engineering and Informational Sciences, 28, 401–417.
  5. Hogg, R. V., McKean, J. W. and Craig, A. T. (2005). Introduction to Mathematical Statistics, 6th ed. Pearson Education, New Delhi.
  6. Johnson, N. L., Kotz, S. and Balakrishnan, N. (1997). Discrete multivariate distributions. Wiley Series in Probability and Statistics, 165, Wiley, New York.
  7. Karlis, D. and Mamode Khan, N. (2023). Models for integer data. Annual Review of Statistics and Its Application, 10, 297–323.
  8. Karlis, D. and Ntzoufras, I. (2005). Bivariate Poisson and diagonal inflated bivariate Poisson regression models in R. Journal of Statistical Software, 14 (i10).
  9. Kocherlakota, S. and Kocherlakota, K. (1992). Bivariate Discrete Distributions. Statistics: textbooks and monographs, 132, Marcel Dekker, New York.
  10. Krishna, H. and Pundir, P. S. (2009). A bivariate geometric distribution with applications to reliability. Communications in Statistics–Theory and Methods, 38, 1079–1093.
  11. Lai, C.D. (2006). Constructions of Discrete Bivariate Distributions. In Advances in distribution theory, order statistics, and inference, 29–58, Birkhäuser.
  12. Odhah, O.H. (2013). Probability Distributions on the Class of Integer Numbers. Doctoral dissertation, King Saud University.
  13. Omair M.A., Alomani, G. A. and Alzaid A. (2022). Bivariate distributions on Z2. Bulletin of the Malaysian Mathematical Sciences Society, 45, 425–444.
  14. Omair, M, A, Alzaid A., Odhah, O. H. (2016). A trinomial difference distribution. Revista Colombiana de Estadística, 39, 1–15.
  15. Phatak, A. G. and Sreehari, M. (1981). Some characterizations of a bivariate geometric distribution. Journal of Indian Statistical Association, 19, 141–146.
  16. Sarabia Alegría, J. M. and Gómez Déniz, E. (2008). Construction of multivariate distributions: a review of some recent results. SORT, 32, 3–36.
  17. Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical Journal, 30, 50–64.
CAPTCHA Image