Log transformed transmuted exponential distribution‎: ‎an increasing hazard rate model to deal with cancer patients data

Document Type : Original Article

Authors

Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India

Abstract

‎In this paper‎, ‎we introduce a novel distribution called the log transformed transmuted exponential (LTTE)‎, ‎which is derived by applying a log transformation to the transmuted exponential distribution as the baseline model‎. ‎We derive several key mathematical and statistical properties of the LTTE distribution‎, ‎including its moments‎, ‎quantile function‎, ‎skewness‎, ‎kurtosis‎, ‎reliability function‎, ‎and hazard rate‎, ‎along with their respective shapes‎. ‎The maximum likelihood estimation method is used to estimate the parameters of the distribution‎. ‎The practical applicability of the LTTE distribution is demonstrated by fitting it to three real-life datasets related to cancer patients‎. ‎The results indicate that the LTTE distribution offers a superior fit‎, ‎as evidenced by better values of AIC‎, ‎BIC‎, ‎and the Kolmogorov--Smirnov (KS) statistic‎, ‎when compared to other existing lifetime models.‎

Keywords


  1. Abouammoh, A. M., Abdulghani, S. A., and Qamber, I. S. (1994). On partial orderings and testing of new better than renewal used classes. Reliability Engineering & System Safety, 43, 407 37–41.
  2. Al-Kadim, K. A., and Mahdi, A. A. (2018). Exponentiated transmuted exponential distribution. Journal of University of Babylon for Pure and Applied Sciences, 26, 78–90.
  3. Bhutani, M. A. N. I. S. H. A., Kochupillai, V. I. N. O. D., and Bakshi, S. (2004). Childhood acute lymphoblastic leukemia: Indian experience. Indian J Med Paediatr Oncol, 20, 3–8.
  4. Bonferroni, C. E. (1941). Elementi di Statistica Generale. Gili, Torino.
  5. Bowley, A. L. (1926). Elements of Statistics. P. S. King & Son Ltd, London.
  6. Elbatal, I., Diab, L. S., and Alim, N. A. (2013). Transmuted generalized linear exponential distribution. International Journal of Computer Applications, 83, 29–37.
  7. Gupta, R. C., Gupta, P. L., and Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and Methods, 27, 887–904.
  8. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007). Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57, 43–66.
  9. Khan, M. S., King, R., and Hudson, I. (2013). Characterizations of the transmuted inverse Weibull distribution. Anziam Journal, 55, C197–C217. 
  10. Kumar, D., Singh, U., and Singh, S. K. (2015). A method of proposing new distribution and its application to Bladder cancer patients data. Journal of Statistics Applications and Probability Letters, 2, 235–245.
  11. Lee, E. T. (1992) Statistical Methods for Survival Data Analysis, 2nd Edition, Wiley Inter science, New York.
  12. Lee, E. T and Wang, J. (2003). Statistical Methods for Survival Data Analysis. John Wiley & Sons, New York.
  13. Lorenz, M. O (1905). Methods of measuring the concentration of wealth. Publications of the American Statistical Association, 9, 209–219.
  14.  Maurya, S. K., Kaushik, A., Singh, R. K., Singh, S. K., and Singh, U. (2016). A new method of proposing distribution and its application to real data. Imperial Journal of Interdisciplinary Research, 2, 1331–1338.
  15.  Mehrotra, R., and Yadav, K. (2022). Breast cancer in India: Present scenario and the challenges ahead. World Journal of Clinical Oncology, 13, 209.
  16.  Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37, 25–32.
  17.  Owoloko, E. A., Oguntunde, P. E., and Adejumo, A. O. (2015). Performance rating of the transmuted exponential distribution: an analytical approach. SpringerPlus, 4, 818.
  18.  Prakash, G., Pal, M., Odaiyappan, K., Shinde, R., Mishra, J., Jalde, D., ... & Bakshi, G. (2019). Bladder cancer demographics and outcome data from 2013 at a tertiary cancer hospital in India. Indian Journal of Cancer, 56, 54–58.
  19.  Rényi, A. (1961). On measures of entropy and information. In Proceedings of the fourth Berkeley Symposium on Mathematical Statistics and Probability, Contributions to the Theory of Statistics, 4, 547–562.
  20. R Core Team, (2024). R: A Language and Environment for Statistical Computing, R Foundation  for Statistical Computing, Vienna, Austria.
  21. Sathishkumar, K., Chaturvedi, M., Das, P., Stephen, S., and Mathur, P. (2022). Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian Journal of Medical Research, Medknow, 156(4& 5), 598–607.
  22. Shaw, W. T. and Buckley, I. R. (2009). The alchemy of probability distributions: beyond Gram Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv preprint arXiv:0901.0434.
  23. Singh, S. K., Singh, U., and Yadav, A. S. (2014). Parameter estimation in Marshall-Olkin exponential distribution under type-I hybrid censoring scheme. Journal of Statistics Applications & Probability, 3, 117–127.
  24. Verma, E., Singh, S. K., and Yadav, S. (2025). A new generalized class of Kavya–Manoharan distributions: inferences and applications. Life Cycle Reliability and Safety Engineering, 14, 462 79–91.
CAPTCHA Image